Dynamic Reconfiguration in an
Object-Based Programming Language with
Distributed Shared Data

Brent Hailpern
IBM Research Division
Thomas J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

On-line distributed applications generally allow
reconfiguration while the application is running, but
changes are usually limited to adding new client and
server processes and changing the bindings among such
processes. In some application domains, such as on-line
financial services, it is necessary to support finer grained
reconfiguration at the level of entities within processes.
But, for performance reasons, it is desirable to avoid
conventional approaches such as interpretation and
dynamic storage allocation. We present a scheme for
special cases of fine grained dynamic reconfiguration
sufficient for our application domain and show how it can
be used for practical changes. We introduce new
language concepts to implement this scheme in the
context of an object-based programming language that
supports shared data in a distributed environment.

1. Introduction

This research is motivated by the problem of rapidly
changing data in a distributed environment, particularly in
the financial services domain. For example, on-line stock
trading involves: (1) enormous amounts of data (stocks
and options); (2) sharing of data among large numbers of
simultaneous users (financial analysts); (3) rapidly
changing data (as prices of financial instruments
fluctuate); (4) changes to data outside the control of the
system (from the stock exchange wire); and (5) economic
penalties for making decisions based on obsolete data.

An on-line trading system might consist of a shared
“‘prices database’’ and a number of analyst workstations
that execute portfolio management programs. These
portfolio managers would monitor the current prices of
stocks and options, and execute the appropriate purchases
and sales as market conditions change. The key challenge
is that the prices of the various stocks and options change
rapidly, perhaps several times a minute, and to a first
approximation independently from each other and from
the actions taken by any individual portfolio manager.
Multiple portfolios will refer to the same instruments, and

CH2996-7/91/0000/0073$01.00 © 1991 IEEE

Gail E. Kaiser
Columbia University
Department of Computer Science
New York, NY 10027

have separate criteria for when price changes are
significant to the financial analysts’ strategies. Thus,
different portfolios may require information about price
changes at different time intervals and/or different
granularities of change. What we have in mind is
essentially soft real-time processing, where it is not
mandatory for every portfolio to be informed of every
possibly trivial price change, but where the quality of
service is balanced against the computation and
communication costs of providing that service.

In a previous paper [8], we introduced a distributed
object-based programming model that addresses these
problems. This programming model supports an
application architecture where price changes arc
monitored by agents operating on behalf of individual
portfolio managers. The sampling rate of each agent is
specific to the requirements of its portfolio manager, and
it notifies its manager of changes at the granularity
considered interesting by the manager’s financial strategy.
This model is suitable for other applications with similar
characteristics, such as network and systems
management [11], machine vision [3] and animation [5],

We have developed a language based on this model.
ProFIT (PROgrammed FInancial Trading) is a
coordination language [4] that extends the declarations
and statements of some base computation language, such
as C, with additional facilities to support distributed
computation in the context of rapidly changing shared
data. In particular, PROFIT adds facet as the minimal unit
of data and control, objects as collections of facets
encapsulated for the purpose of information hiding,
processes as collections of facets organizing the run-time
structure of the system, and programs to enumecrate the
objects in a system and designate the configuration of
communicating processes. Different facets of the same
object may reside in different processes, and a facet may
be shared among multiple objects.

An archetypical program includes one facet representing
each of the financial instruments available, with these
executing in one or more processes as the ‘‘prices
database’’. Each of the several portfolios would be
represented by an object that includes some subsct of the

shared price facets, plus additional private facets for
monitoring changes to prices and computing financial
strategies. Since an object may be distributed among
several processes, a portfolio object may include price
facets located in a process that resides on the price server
and portfolio management facets in a process on an
analyst’s workstation. Facets that monitor changes in the
market might be located on either machine, reflecting
different computation and communication costs tradeoffs.

PROFIT has been designed for early binding of facets into
objects and facets into processes, in order to obtain the
performance of compiled languages and avoid the
overhead of dynamic storage management. Sharing of
facets among objects is permiited by indirection tables,
since each object provides a different execution context
for its facets. Some optimization can be realized by
compiling out indirection whenever possible. For
example, not all facets are actually shared; the target of
indirection for these non-shared facets can be ‘‘in-lined’’.

Unfortunately, such early binding inhibits flexibility in
critical ways. For example, in the extreme it does not
allow adding instruments, adding portfolios, or changing
the composition of portfolios over time. In this paper, we
propose to solve this problem by relaxing the early
binding paradigm to support special cases of late binding.
We refer to these cases collectively as dynamic
reconfiguration. Dynamic reconfiguration gains the
flexibility to implement the specific rebindings required
for our application domain without abandoning the
benefits of early binding. This approach has long been
used for operating system facilities and distributed
services, but has not previously been embedded in a
programming language to support reconfiguration at a
finer granularity than that of an entire process.

To support dynamic reconfiguration, we add three new
concepts to PROFIT: breeds, stalls and pens. Breeds are
similar to types in that they define the set of facilities
required for facets that can be substituted for each other in
a particular context. Stalls and pens are similar to
variables and arrays, respectively: stalls “‘hold’’ a single
facet and pens “‘hold” a collection of facets, and in both
cases the facets that are held can be changed during
program execution. These new concepts give the PROFIT
programmer the ability to change the set of facets
operated on by a computation. In this new version of
PROFIT, it is possible to change the static organization of
an executing program, but without going so far as to
support dynamic storage allocation or some interpretive
scheme. Throughout the rest of this paper, we refer to our
original design of PROFIT as PROFIT; and the extended
PROFIT introduced in this paper as simply PROFIT,

2. Background

The PROFIT, object model supporis data sharing among
arbitrary objects in a distributed environment. There are
three important components: facets, objects and
processes. A facets is the minimal unit of data and
control. Although facets may be shared among multiple
objects, only one operation at a time may execute within a
facet. An object is a statically defined collection of facets
representing an information hiding unit. An object
defines a context for binding references between its facets
and an external interface for encapsulating the facets. A
process is a statically defined collection of facets —
orthogonal to objects — that must execute at the same
physical location. That is, a process represents a single
virtual address space in which its facets reside, and
allocation of computation and communication resources
to facets is handled by their process. Multiple facets may
execute concurrently within the same process.

Every facet is contained in one or more objects and
exactly one process. Objects and processes are
orthogonal: objects are not contained in processes nor
vice versa. There is a fourth concept, Program, that
specifies the objects and processes that together make up
a single executable program, the physical locations of the
processes at execution-time and the initialization code to
start the program running. This organization is illustrated
in Figure 2-1,

‘I‘Il—ll—ll_ll—lli “—f."-1:
object A
fs o
=" - — b 5 o o o —
—-.ﬁu.—.r...__....‘ - -j
object B fa I
.—.._.._..—.._u_- t, 1
O —]
rocess R

Figure 2-1: Facets, Objects and Processes

A facet has a unique name and a set of named slots, each
of which may contain either a data value or procedure
code. Slots are typed, with either the type of the data
(e.g., a C datatype, if C is the computation language) or
the return value of the procedure (a C datatype or void).
Procedure slots must be equated to specific C functions at
compile-time. Within one of these C functions, the
program text can refer to slots in the same facet (both data
and procedure) via extended syntax, which is supported
by the PROFIT preprocessor. Evaluating a data slot returns
the current value, while evaluating a procedure slot
executes the procedure (with the parameters provided)
and returns the result of the execution, if any. Data slots
may be reassigned during execution to new values, but
procedure slots cannot be changed. This structure is
similar to objects in Self [13].

74

Change-monitor

active

Some-instrument
lactive

$14.38
1Q-option-price |($15,$.38)
2Q-option-price [($15,$.88)

stock-price [® "* l

1Q-option-price| [@] |} -:

high-trigger $23 tock-price
low-trigger $13 b
monitor-code | Binding :
strategy-wake |[®] |}- Table = :: f

2Q-option-price|[@] || 9= - [strategy
= actlve]

External grenee = ¥ buy =3

interface : LoV Lsell k=3

buy-it | --{-eeee s i query -3

sell-it P R E ;'"'_:'-' wake_up [?l

status| --]...-... ‘ strategy-code @
Portfolio : : broker 5
Manager L

(& = C-function
= INDIRECT

e P (Joo-Broker,customer)

Figure 2-2: Generic Object

Within a facet, every use of an identifier matches an
identifier defined within the facet. There are no free
variables. In order to support references from one facet to
another, one or more slots of a facet may be declared
indirect, as depicted in Figure 2-2. The containing object
is then obliged to provide a binding, to a slot in some
other facet within the same object or to an entry in the
interface of another object. Every object has a binding
table for this purpose. When a procedure slot is being
executed, and the code references an indirect slot (data or
procedure) of its facet, then the semantics are to refer to
the current object’s binding table to resolve the reference.

An object defines an external interface and encapsulates
its internal data and procedures. The interface defines the
set of entries visible to other objects, representing
procedures or pairs of get and put operations on data.
An object binds each entry in its interface to a slot in one
of its facets. Since facets may contain indirect slots, each
object also binds each indirect slot in one of its facets,
either to a slot in another of its facets or to an entry in the
interface of another object. In both cases, the result of the
mapping is to a pair, (facet, slot) or (object, entry).

When code (a C function) is executing within a facet, it
may directly access only those slots defined in the same
facet. There is a queue associated with each facet, and an

arriving call is inserted in that queue. When a facet is
inactive, it accepts a call from its queue. Subsequent
indirection is with respect to the binding table of the
object responsible for the call. When the called operation
completes, the facet places the response in the queue for
the calling facet, and it then goes on to accept its next
queued call, if any.! From the viewpoint of the calling
facet, it queues the appropriate operation at the called
facet and becomes inactive. The calling facet is not
suspended, but may now accept the next call. When the
response to the original call is eventually accepted from
its gneue, the facet continues with the operation that made
the call from the point where it left off.

So far, we have considered only the case where a facet is
part of exactly one object, and thus there is exactly one
binding table that needs to be considered. When a facet is
shared among multiple objects, each of these objects
provides a different binding table that must resolve all the
shared facet’s indirect slots. When a facet is active, only
one binding is actually used, the one belonging to the
object from whose facet the active facet was called.

This description has been simplified for ease of presentation.
ProFIT,) also supports threads, asynchronous message passing, priorities
and pre-emptive scheduling [9].

75

Communication between objects is a simple extension of
the communication between facets. When a call is
received at the interface of an object, the object maps the
call to a procedure slot of one of its member facets. The
call is queued normally at the facet. When the call
returns, the object must send the result back to the caller.

PROFIT,, processes are close to the conventional notion of
processes in operating systems. Each facet resides in the
address space of a particular process, and processes thus
represent the execution-time organization of facets. In
contrast, objects represent the compile-time organization
of facets. Objects do not ‘‘live’” anywhere, and facets of
the same object may be distributed among multiple
processes on the same or different machines. The only
physical representation of objects are their binding tables,
which are replicated in every process containing one or
more of their facets.

3. Dynamic Reconfiguration

The PROFIT, language as described above (and in our
previous paper) assumes a fixed, static set of facets,
objects and processes determined at compile-time. All
entities within the PROFIT,, coordination language are
statically allocated, in particular, once a facet is assigned
to a process it cannot migrate and no new facets, objects
or processes can be added to the program. All connections
among entities are also statically determined, specifically,
a portfolio cannot substitute one instrument for another or
change the number of instruments in its portfolio.

The PROFIT, language does not support any notion of a
facet type, or more specifically in this context, any
operations that support the creation of a new facet that is
an instance of a given facet type. PROFIT, also does not
permit the rebinding of indirect slots in a facet. This
restricted organization permitted us to concentrate on the
programming model without concern for run-time
interface checking, dynamic storage allocation, naming
and locating facets, objects and processes, and so on.

In this paper we relax these restrictions to allow limited
changes to the static structure. In particular, we support
the following special cases: the ability to substitute one
facet for another with a compatible interface, operations
over sets of facets where the constituent elements can be
changed, and addition of new facets, objects and
processes to an executing program. This allows us to add
new instruments to the prices database, change the
composition of existing portfolios, and add new users and
their portfolios. We call this dynamic reconfiguration. An
alternative would have been to add conventional type
definition facilities, dynamic storage allocation
operations, facilities for directly modifying binding tables,

run-time interface checking for newly bound indirect
slots, and so on, making the coordination language almost
indistinguishable from a computation language.

Our approach is built on three main concepts: breeds,
stalls and pens. A breed is a partial facet description
representing an abstract type. A stall is a collection of
facet slots that can be mapped to the corresponding slots
in any one facet (called the occupant) belonging to an
associated breed. A pen is a collection of facet slots that
can be mapped to the corresponding slots in any member
of a set of facets (called a herd) that all belong to an
associated breed. Breeds and stalls provide a simple
facility for changing an executing program: replacing a
“client’’ facet’s binding from one ‘‘server’’ facet to
another ‘‘server’’ facet. Pens and herds add the ability to
operate over changing collections of facets. We chose
this terminology because more conventional terms like
type, collection, set, interface, variable, group, view, etc.
already have multiple meanings in the literature.

4. Breeds and Stalls

In PROFIT,;, each operation invokes a procedure slot in
some specific facet. A procedure slot either contains a C
function, or is declared indirect, in which case the
enclosing object provides a binding to a procedure slot in
another facet or in the interface of another object.
Because the system uses static binding, all these
indirections can be checked at compile time (e.g., that the
referenced slots exist and that procedure references refer
to procedure slots as opposed to data slots).

We use breeds and stalls to relax the constraint that a
binding cannot change over time. Breeds provide the
mechanism for declaring which facets can substitute for
which other facets. Stalls are the language construct that
permits certain slots to actually be rebound to a new
occupant. An important concept is that breeds and stalls
refer to multiple slots in a single occupant, hence stalls
permit the binding of multiple slots, all in the same facet,
as a single unit whereas all bindings in PROFIT, arc on an
individual slot-by-slot basis.

A breed is defined as a set of slot names representing a
service provided by a facet. Every facet that contains at
least this set of slots is a member of the breed. For
example, we can define any facet with procedure slots
1Q-option-price and 2Q-option-price to be a
member of the Options breed. A breed corresponds to
an abstract type in Emerald [2] or a role in RPDE [7]. A
breed can be extended to include the ‘‘signature’’ of each
of the procedure and data slots in the defining set, but in
this paper we simplify the discussion by considering only
the names of the slots.

76

Dynamic rebinding introduces two potential problems:
interface mismatches between a client and its new server,
and the interruption of outstanding calls from the client to
its previous server. An interface mismatch arises when
the new occupant of a stall does not provide the same
facilities as the old one. One way of handling this
mismatch would be to adopt the ‘‘message not
understood”” feature of Smalltalk. This approach,
however, requires an exception handling mechanism to
deal with unexpected responses. Another possibility
would be to identify, at run-time, a set of slots to be
rebound to some new occupant, and then carry out slot-
by-slot interface checking at the time of rebinding.
Instead, breeds allow manipulation of a set of slots as one
unit and compile-time determination of type
conformance. By declaring the breed at compile-time,
only one check has to be carried out to ensure
membership in the breed is preserved upon a new binding.

Strategy
1Qs 25
2Qs 100
=|. £ § [1Q-option-price|®|
Jlged . :
»| & & o [2Q-option-price||®

/

binding
table
Some-Instrument
/ stock-price $114.75
/1 1Q-option-price | ($115,$.50)
2Q-option-price | ($115,$4.75)

Figure 4-1: Binding an Occupant to a Stall

Breeds describe the facilities offered by server facets. A
stall identifies the particular set of indirect slots within a
client facet that can be rebound to corresponding slots in
any member of an associated breed. A stall consists of a
stall name, a set of slot names, and a breed name. Figure
4-1 illustrates a stall (Some-company) within a generic
facet (Strategy) and shows how the slots of an
occupant (the Some-instrument facet), those
matching the Option breed definition, are bound to the
Some-company stall in the Strategy facet. In

addition to the original (facet,slot) to (facet,slot) bindings,
the binding table is now extended to bind (facet,stall)
pairs to occupant facets.

Breeds solve the static interface problem, but there is also
a dynamic component of replacing one occupant with
another. In particular, a facet may have made a call to the
original occupant of its stall, and then before that call
returns, execute another operation to change the contents
of its stall to some other occupant. It is important to
define what happens to the dangling call. The call
completes its execution and returns its result, and the
calling facet continues from that point. However,
subsequent calls to the same stall will be sent to the new
occupant rather than the old one.

5. Pens

Using breeds and stalls, the PROFIT programmer can
define portfolios consisting of multiple instruments, and
change which particular instruments are included as
market conditions change. The programmer must declare
specific named stalls/slots in his portfolio to be bound to
each desired instrument, and although an instrument can
be substituted, the stalls/slots in the portfolio code cannot
be renamed. This is analogous to having variables
declared X1, X2, X3 in a conventional computational
programming language (or, alternatively, a fixed size
array), with no ability to create more variables (or change
the size of the array) on the fly.

The limitations of this ‘‘feature’” become clear when one
wants to change the size as well as the composition of a
portfolio during program execution. Of course one could
declare a large number of stalls, and start out with most of
them empty, but then it is necessary to remember which
stalls are empty and program the necessary stall
management. We would like to provide a scheme for
dynamically determining the number of facets that can
provide a designated service to the same client facet, We
extend PROFIT’s stall notion to allow the binding of a set
of slots in a facet to a corresponding set of conforming
slots in each member of a collection of facets, thereby
allowing a portfolio to contain multiple instruments,
where the number of members can change over time.

A herd consists of a set of facets that all belong to the
same breed. The pen is the language construct that allows
herds to be constructed. Figure 5-1 shows an example of
mapping a herd of instruments into the
Ranch-companies pen of the Big-strategy facet.
Notice that the aggregate structure is effectively
represented as part of the binding table, where the pen is
linked to an entry in the binding table and this entry links
to all of the facets in the herd.

77

Big-strategy

1Qs 25
2Qs 100
c|.Z § [1Q-option-price|®
8 E g S 2Q-option-price||(®

bindin
table 9

Acthird-Instrument]

Figure 5-1: Binding a Herd to a Pen

Elements of pens are not addressable by indices, but
instead are operated on by various set operations, using
SETL-like constructs (e.g., exists, forall, from).
Within the scope of one of these set operations, a pen can
be treated like a stall to access the slots of an individual
member of the herd and treat it as an occupant. For
example, a portfolio manager can iterate through the
instruments currently held, check their prices and other
information, and decide which to sell (or buy).

All that is needed for a facet to belong to a breed is to
provide the designated set of slots. Since an object
interface can also provide a set of slots, objects as well as
facets can be members of a breed. In the rest of the paper,
we say facet when referring to a member of a breed, but
the same statements apply equally well to objects.

6. Registries

We have discussed the idea that the membership of a herd
can change. The questions arise as to how does a
program know what facets are available to be added to a

herd, and how does it add them, For example, we would
like for a portfolio manager to be able to iterate through
the instruments available and decide which to invest in,
whether or not it has made previous investment in any of
these instruments. It should even be possible to consider
new instruments that did not exist at the time the portfolio
was originally constructed.

Assume for now that there exist objects, called registries,
that contain members of a particular breed. These
registries can be queried, and they return one or more
registered members. A query might be simple, for
example, ‘‘give me a member” or ‘‘give me all the
members’’, or associative, for example, ‘‘give me the
member with the highest current yield’’ (assuming that
yield is the name of a slot defined for the breed). The
resulting member or members returned are then bound
into a stall or pen, respectively.

It is important to note that the query does not return
handles, such as pointers or ‘‘facet identifiers’’, that could
be stored in a variable or passed as a parameter.
Throughout our work on PROFT, we deliberately
avoided introducing pointers to facets, or other kinds of
facet identifiers. Such identifiers are ugly in principle
because without hardware or operating system support
(e.g., capabilities), programs can manipulatc them in
arbitrary ways, forge them, and access the associated
facets in violation of integrity constraints. Hence in
PROFIT,, we were able to avoid explicit pointers or
identifiers because all facets were bound statically and all
references went through the statically created binding
table. As a result, there is no need for indirect accesses to
explicitly dereference a pointer or lookup a facet
identifier. Assume for the sake of discussion that there is
exactly one registry for each breed. When a new facet is
created, it is automatically added to the appropriate
registries. Subsequent queries on these registries can
include this facet in a stall or add it to a pen.

This mechanism is rather limiting, since it does not permit
registration according to criteria more restrictive than
breed. Thus PROFIT extends these system-defined
registries to also allow programming of objects as user-
defined registries. These registries are constructed using
the breed, pen and query facilities already described,
building up a herd of facets or objects that match more
specific criteria as well as the breed. Hence PROMT
registries are first class objects. A potential client can
query a user-defined registry in the same manner as a
system-defined registry. Figure 6-1 shows a facet making
a query to a user-defined registry. The user-defined
registry is itself defined with a pen containing those
members of a particular breed that are of interest for the
purpose of the registry.

78

binding
Strategy table

B FANE portfolio-mgr
e my-registry|i(®) |1

=|. § - 1Q-option-price @
© k > ~
}7; |i§ gFG-opﬂon-price @

B

"‘Query(my-registry,Some-company)

Some
registry

A-third-Instrument

[atckorice | 100}
megin

I”""""'l 200 |

(=T KT My-instrument
g0 ECTET AT
[[ioamtanpriee [3179 |

Figure 6-1: Query to User Registry

Queries to the system registry for a particular breed
simply name the breed as a qualifier. But given the
existence of user-defined registries, the question arises as
to how does a facet name one of these registries. Any
facet that is designed to work with a particular registry
can have the appropriate indirection statically built in.
Similarly, a facet could contain slots representing multiple
predetermined registries. But if more flexibility is
desired, then a facet must be able to change the registry it
uses, or use a set of registries, where membership in the
set can change. This can be done using stalls and pens as
already described, to substitute one registry for another or
to select from a herd of registries. A facet determines the
set of available registries through the system-defined
Registry registry, the registry of members of the
registry breed.

7. Ranchhouses

There are two alternative paradigms for adding facets and
objects to a running program, internally and externally. In
the internal case, the program itself creates the new
entities, e.g., by executing the new operation on the type
of the entity. This approach is common in object-oriented
languages, where the creation/destruction of objects is the
primary mechanism for computing.

The purpose of PROFIT, however, is to provide a static
structure in which computation takes place. When
dynamic reconfiguration is necessary, the programmer
should create the new entities externally to the system and
then combine them with the running system. This is the
approach taken in operating systems, when new processes
are added while the operating system is executing.

Thus the programmer adds new facets to a running
PROFIT program by defining new processes to contain the
facets, compiling and linking, them, and initiating
execution of the process. The initialization of the new
process includes communication with its peer processes to
add the new facets to the appropriate registries. New
objects can be introduced independently, made up of new
and/or existing facets, by generating new binding tables.
The programmer then executes an injection program that
installs the new binding tables in the appropriate running
processes where the indicated facets reside.

Both of these techniques add on to an existing program
without disturbing its existing structure or execution.
This is analogous to how ranchhouses are constructed. An
existing house is expanded by adding new rooms onto the
end, with the previous outside door (or wall) becoming a
door between the old house and the new section.

8. Implementation

The current PROFIT implementation supports only a single
process, although there may be multiple objects and
shared facets. It includes several language facilities
related to timing and scheduling, for example, the
everytime statement repeats a loop within a specified
time period. The implementation is in the form of a
coordination language for the C computation language.
The coordination code is translated into C, and the
compiler and run-time support is written in C. The parser
consists of about 4300 lines of C, 250 lines of lex rules
and 650 lines of yacc rules. The run-time support consists
of an additional 1300 lines of C.

The SPLENDORS system, now in progress, will provide
a library of generic facets and objects for reuse in user
portfolios; parameterization and inclusion of library
components in application systems; an X windows
interface for applications; and a specific stock trading
application intended for use by financial industry
professionals.

9. Related Work

Dynamic reconfiguration is standard in operating systems
and network management systems, where there are a
number of resources to be managed that change relatively

79

infrequently. The SOS operating system [12] is similar to
PROFIT in that multiple objects can be combined into a
group, with easy communication among the objects in the
group, even though the objects reside in multiple contexts.
A local proxy provides access to the service collectively
provided by the group. Proxies may be migrated as
needed for service. SOS provides a mechanism for
certain cases of dynamic reconfiguration in the form of
dynamic classes.

The Orca programming language [1] is based on a shared
data-object model, which provides reliable and efficient
sharing of variables among the processes of a distributed
application. There is no dynamic reconfiguration in the
sense we describe here. The Mercury system [10]
supports some dynamic reconfiguration through server
ports, which are reestablished after network failures and
permit binding of new clients to servers during program
execution. Hailpern and Ossher [6] have extended the
notion of abstract type to a view which includes interface
specification, the set of objects that can provide a service,
and a set of objects that can consume the service. This
serves as a framework for describing different inheritance
and delegation mechanisms,

10. Conclusions

We have presented a new approach to dynamic
reconfiguration in on-line distributed applications based
on a data sharing model. Our data sharing model consists
of facets, objects and processes, with facets as the unit of
sharing. Facets reside in a single process but may be
shared among multiple objects, and the facets of the same
object may reside in different processes. Facets can be
written independently of the composition of objects as
information hiding units and interface to each other
through the binding table(s) of the containing object(s).

Our original language design featured static allocation of
facets. The primary contribution of this paper is the
addition of important special cases of dynamic
reconfiguration, without resorting to general dynamic
allocation. We propose a new metaphor consistent with
PROFIT’s data sharing model for expressing dynamic
reconfiguration facilities within the programming
language. Breeds describe the facilities required by an
entity, stalls are collections of slots that are bound to a
member of the designated breed, and pens are essentially
stalls containing multiple members of a breed. Registries
provide the means for determining candidates for such
bindings. Ranchhouses are proposed as the means for
defining the new code that extends an existing application
with new facets, objects and processes.

Acknowledgments

Tushar Patel, Jason Kim, Isai Shenker, Vanessa Cole and
Michael Mayer contributed to the implementation effort.
Discussions with George Beltz, Terry Boult, Jim
Donahue, Gary Herman, Catherine Lassez, Aurel Lazar,
Harold Ossher and Dan Schutzer influenced the
development of our ideas.

Some of this work was done while Prof. Kaiser was an
Academic Visitor at IBM Research. Prof. Kaiser was
supported by NSF grants CCR-9000930, CDA-8920080
and CCR-8858029, by grant from AT&T, BNR, Citicorp,
DEC, IBM, SRA, Sun and Xerox, by the Center for
Advanced Technology and the Center for
Telecommunications Research.

References

1 Henri E. Bal and Andrew S. Tanenbaum. Distributed
Programming with Shared Data. In JEEE ICCL, pages 82-91. October,
1988.

[2) Andrew Black, Norman Hutchinson, Eril Jul and Henry Levy.
Object Structure in the Emerald System. In ACM OOPSLA, pages
78-86. September, 1986.

3] Terry Boult. Private Communication. 1990.

[4) Paola Ciancarini. Coordination Languages for Open System
Design. InJEEE ICCL, pages 252-260. March, 1990.

{S] Paul E. Haeberli. ConMan: A Visual Programming Language
for Interactive Graphics. In ACM SIGGRAPH, pages 103-111. August,
1988.

[6] Brent Hailpern and Harold Ossher. Extending Objects to
Provide Multiple Interfaces and Access Control. JEEE TSE 16(11),
November, 1990.

[71 William Harrison and Harold Ossher. Checking Evolving
Interfaces in the Presence of Persistent Objects. Technical Report RC
15520, IBM Research Division, February, 1990.

[8] Gail E. Kaiser and Brent Hailpern. An Object Model for Shared
Data. In JEEE ICCL, pages 135-144. March, 1990.

[9] Gail E. Kaiser and Brent Hailpern. An Object-Based
Programming Model for Shared Data. ACM TOPLAS , 191. In press.

[10] Barbara Liskov, Toby Bloom, David Gifford, Robert Scheifler
and William Weihl. Communication in the Mercury System. In
IEEE HICSS, pages 178-187. January, 1988.

[11] Subrata Mazumdar and Aurel A. Lazar. Knowledge-Based
Monitoring of Integrated Networks. In IFIP TC 6/WG 6.6 Symposium
on Integrated Network Management, pages 235-243. May, 1989.

[12] Marc Shapiro, Philippe Gautron and Laurence Mosseri.
Persistence and Migration for C++ Objects. In ECOOP, pages 191-204.
Cambridge University Press, July, 1989.

[13] David Ungar and Randall B. Smith. Self: The Power of
Simplicity. In ACM OOPSLA, pages 227-242. October, 1987.

80

