US005960404A

United States Patent [
Chaar et al.

(1] Patent Number: 5,960,404
[45] Date of Patent: Sep. 28, 1999

[54]

[75]

MECHANISM FOR HETEROGENEOUS,
PEER-TO-PEER, AND DISCONNECTED
WORKFLOW OPERATION

Inventors: Jarir K. Chaar, Tarrytown; Brent T.
Hailpern, Katonah, both of N.Y;
Edwin S. Park, Middletown, N.J.;
Santanu Paul, New York, N.Y.

Assignee: International Business Machines
Corp., Armonk, N.Y.

Appl. No.: 08/919,838
Filed: Aug. 28, 1997

Int. CLS oo GO6F 17/60, GO6F 9/44
US.ClL e 705/8; 705/9; 705/11;
707/104; 395/672; 395/674

Field of Searchc.ccoovvvvvevin. 705/7, 8, 9, 1,
705/10, 11; 395/670, 672, 673—677, 707/1,

100, 101, 103, 104

References Cited
U.S. PATENT DOCUMENTS

5,535,322 7/1996 Hecht ...cccvvviiiviniiiiiiiriiicine 705/1
5,721,912 2/1998 Stepczyk et al. . .
5,721,913 2/1998 Ackroff et al. 707/103

5,802,493 9/1998 Sheflott et al. 705/1
5,809,265 9/1998 Blair et al. 345/339
5,819,263 10/1998 Bromley et al.ccovvvuivvvvnnenne 705/3
5,826,020 10/1998 Randell 395/200.32
5,826,239 10/1998 Du et al. cooeuecvevceneeceirceenne 705/8
5,828,375 10/1998 Nomura et al. ...oocoeververeennennnn. 345/339

FOREIGN PATENT DOCUMENTS

197 12 946
Al 12/1997 Germany .
WO 97/07472 2/1997 WIPO .

Primary Examiner—James R. Trammell

Assistant Examiner—Cuong H. Nguyen

Attorney, Agent, or Firm—Scully, Scott, Murphy & Presser;
Kevin M. Jordan, Esq.

[57] ABSTRACT

A mechanism for heterogeneous, peer-to-peer, and discon-
nected workflow execution across a network infrastructure.
Performer Agent entities provide a homogeneous view of
humans, applications, and heterogeneous workflow systems
and components that act as Performers on the network by
executing Tasks. Source Agent entities provide a homoge-
neous view of heterogeneous service requesters such as
workflow scripts executing on different workflow systems,
which generate Activities that need to execute on Performers
as Tasks. Task Request and Task Response messages are
used to standardize the communication between Source
Agents and Performer Agents, along with other messages for
controlling and queuing Tasks. Workflow systems interact
with each other as peers using this mechanism by sending
workflow execution requests, workflow script templates,
and workflow execution environments to each other. Dis-
connected operation is handled by ensuring the continuous
availability of Source Agents and Performer Agents on the
network and providing a mechanism for Sources to discon-
nect from Source Agents and Performers to disconnect from
Performer Agents.

48 Claims, 25 Drawing Sheets

100 230 130 260 120
[t s
Activit
. Source 150 140 Performer
Source Agent { — Agent
— 115 Task Response Task Request 135
e
Task Response Task Request
)]
150 140
Network
1?0 11310
Task R
Task Response ask Request
4
230 > Task Request 135 130 260 120
100 115 Task Response [€—— {
) Tosk
Activity 140 | Performer
Source 150 160 Agent er
Source Agent
L T

110

5,960,404

Sheet 1 of 25

Sep. 28, 1999

U.S. Patent

| "Ol4 0
C
[jusby
J3UL0I3 juaby 091 0S| 99.n0g oS
+1%d 1WI0}Ja vl 1 f
m %SD] w w \Iu!! L
) b asuodsay %sp) Gl
o& 092 0y o] jsanbay %sD| |
isanboy so| asuodsay xsp|
w)
0} 05}
YIOMIAN
i 05!
{
fsanbay Jysp) asuodsay ysp)
||I|Y, =
S| jsonbay xspy | | asuodsay xsp) /\m: :
- /'Il\\
uab)) juaby
A0 HEd Lm?oumm 07} 051 82.N0G °21n9S
mmv_ms w a | Koy
o& omwm 0¢! 0l

5,960,404

Sheet 2 of 25

Sep. 28, 1999

U.S. Patent

0z . V¢ 9l
) f 01
asuodsas ad1AJes NSD} f
J3WLI0LIa
> juaby
ol > | 9foud SETIIEY 091
) \
09¢ | isenbas somas xsoy \ »
! G¢l
0v¢ jsanbay ysp)
)
ovl

YIOMIaN

051
f

asuodsay xsp|

juawabpajmouoy
Isanbay xsp|

LY
\
N
\
Y

\

\
\
Ay

)
Sl

Gl

02¢

{

jsanbas 8oIBS AIAOD

juaby
32In0¢g

om_

a4oALId

Y

-l
-

01}

jsonbas aa1Mas ApAIOD

92.nog

TRy >

)
01z

)
0¢¢

5,960,404

Sheet 3 of 25

Sep. 28, 1999

U.S. Patent

¢le
. .
0! ¢8¢ asu0dsal mN G_m
4 \ [04ju0d 8joAld| (T}
asuodsal (
Jawio}ia Aianb ajpaiid
> juaby
e < oA Jauilo}lay 091
) Jsanbau = f
09¢ [04ju09 3joALId //
jsanba.

Aanb aypaud

asuodsay (0.4ju0)

)
28

.y

asuodsay Auanp

)

18¢

v8¢

{

YIOM}aN

asuodsay Asenp

AN

dlqnd

asuodsey |0Jju0)

va
GlC
74 {
{ asuodsal
osuodsas | 11044u02 3joAud om:

Aianb ayoand
juaby >
92N0S 94DALd 901n0§
ow_ B |senbaJ -v _
fsonbad [04ju0d 3jDAId 0¢e

Aianb ajpaud

)

08¢

)

04¢

5,960,404

Sheet 4 of 25

Sep. 28, 1999

U.S. Patent

05}
ﬁ

asuodsay
A4S0

—r

dlgnd
—~—

jsanbay xsp|

)

0rl

0¢¢

{

)

lajpupny asuodsas ¥sp|

€ Old

072
|

9su0dsal 921AIBS AJALOD

yoyodsip jsenbas ysp|

a40ALId

Y

10yp1auay Aoy

0s¢”

Juaby 99in0g

jsenbas 8d1aias AJIAljOD

)

041

)

01

-0l

lne
%M%,m

)
00}

5,960,404

Sheet 5 of 25

Sep. 28, 1999

U.S. Patent

0¢y

p

¥ Ol

052
|

.

13JpubH 3so|

9su0dsas 20IAI9S YSD)

0zy
A

05!
)

!

Jawiogied

94oALd

Jayoppdsip Jsanbau ysp|

asuodsay
ASD]

jsanbas aoimas yspy

)
0z

)

0v¢

Js|puby asuodsas ysp|

dlqnd

01

Juaby Jaunojsa

Jsanbay 3sp|

)

Yy

)

N4

5,960,404

Sheet 6 of 25

Sep. 28, 1999

U.S. Patent

G Ol

0eS

$JajaWnIDy jnding %o

adA] xsp|

Snipig

AoJsIH

uoljpjouuy

90UBJ8)8YJawWLI0}9

aMmsol

90U3J3)aYyjuabyaainog

iAoy

0G|

01§

siajawping jnduj %spj

adA] Asp|

SnbJS

AI0}SIH

aul|ppa(]

Ajuoud

uolybjouuy

9ouaJa jayjuabyaainog

QikuAloy

orl

5,960,404

Sheet 7 of 25

Sep. 28, 1999

U.S. Patent

0¢!

,

juaby

juaby aainog
ddy ealypI0gD||0)

~_

089
Oyl—] isonbay xso)

SENTILIOEN)

uonealddy aAijeioqe)jon

¢!l
(099 _
juaby jusby soinog -ddy
Jawo}Jay MO[YI0p WO}SN)
11/lllll||\\\\\\w f
0¥9

or} jsanbay so|

uoijediddy mopyiopm woisny

049
0¢}
,
juaby
18WI0}J3g Eochwmn_som
/l\ f
099
07— Isenbay jsoj
ey
] 029
05! 059 OAMVA\U
| O
Juaby jusby a0unog
Jowoag oS, MOpLION

0!

jsenbay %spj

019

JOAIOS MO|J}JOM UO }dLIS MO[JYIOM

5,960,404

Sheet 8 of 25

Sep. 28, 1999

U.S. Patent

" mojppion)
MaU LIDJS
89L =
@\ 094 Sv/ T jusby Jswiojag 117
{ 0Ll = uol40o}jddy
L] juaby Jawuoyiay { 0t}
1OMBS MOI IO oo jusby Jsuroiay
m S Mo|jiop ety aomog | SEL—] | sonss ysng 0%L ,
- T juaby eainog
G9. ovi—] jsonboy 3507 0F | jsanbay »sp|
I9AI8S MOJJYIOM suoljeaiddy
GGL Sl/
!
06 01/
N L ,. o < (gy
| {
uaby Jswopay juaby Jawiopiay
uoynzjunbug juaby aaunog ubwny juaby aainog

~—_

oy | jsenbay ysp|

suoneziuebio

N~

0% I~

jsanbay ysp)

SUBLINH

5,960,404

Sheet 9 of 25

Sep. 28, 1999

U.S. Patent

J3UlI0JJad UDWNY

S1z V8 9I4
mmw 061
_ ovl 018 oz {
((asuodsay
) : - S
siojep | [boy 50y osuodsor yoo, =
058 - D81y S|IDfaq ¥so I e
1 1L bay xsp) dliqnd
73 ajopdn_{ | boy Jyso) Jajpupy jsanbas ysp|
S jsanbay xsp|
0r8 | 7 b isipop !
Juaby Jowiojlag UBWNY 071
se9 - wolp jsipiom 47| | o ofy o),
0581 D31y UOL{DOL}IfON
90B}J01U1 JaSN ISP
028’

5,960,404

Sheet 10 of 25

Sep. 28, 1999

U.S. Patent

g8 9ld

GlL

018 028
ISIPHOM

\\\
#

)

or! Juaby
09} (\ Jawloiad
jsenbay xso) UetinH
\ jsenbay yspj o
jusby /
s PN [7
w 921n0g
01} !
011

5,960,404

Sheet 11 of 25

Sep. 28, 1999

U.S. Patent

28 DI

08 ™ 0Z8
| Jemeg ispyom L
068— \\\\o_w
018 _IA] =
09} I | osl
[
0vl—] Jsenbay 3sp]
orl
\ Jsanbay ysp|
juaby
92INn0g f /Emm<>
\ 92405
0Ll w
011

5,960,404

Sheet 12 of 25

Sep. 28, 1999

U.S. Patent

A

uoljpayddy
JETVEIN

sj|nsa.

6 Old

0cy

1

0G|

w

Y

)

asuodsay
AsD}

Jayoypdsip asuodsal 3sp)

SENIVEN

90IAIS 9)0AU

jusl|y

juaby Jswiojiay uoypoyddy

Js|pupy jsenbai xsp) ATII

-

alqnd

/

jsanbay yspj

0ty

026

)
7l

)

or!

5,960,404

Sheet 13 of 25

Sep. 28, 1999

U.S. Patent

1yi

0f DI

090} 0801 0G|
uoyng auop UoYNq HIDjS 0¢0! 0z f
{ { asuodsay
_ %sp)
> Jaydjodsip asuodsal 3soj >
uinjaud o__n_sa
s|Ipjeq Ysp JETVE] .
iPieQ A4S0l zw:mm Jajpuny Jsenbas ysp; €
L jsanbay xspj
0701 ysnd juaby Jowuopiad) |
Janeg ysng Ol¥ o
N9 Jualy usn)
just|y ysnd 05/

)
00

5,960,404

Sheet 14 of 25

Sep. 28, 1999

U.S. Patent

891

591
f

e
e
aon

SEYSEIS
MO|J3IOM

pajo|dwiod mojjyom

>

MO|JJOM 9JDI{UD)SU

L Ol

061
oﬂ__ 0z¥ {
w asuodsay
%S}
Jayojodsip asuodsas xsp| >
juabo a1qnd
SETVEN R | P
Ja|pupy Jsanbai %sp|
MO|}}JOM ; Jsenbay xsp|
juaby Jawuojiag 01¥)
18AJ3S MOJPIIOM orl
)
09,

5,960,404

Sheet 15 of 25

Sep. 28, 1999

U.S. Patent

59,
,

¢l

89/

JoMlas

=00

M

O]}3OM

jusby sawiopiay
18AJ3G MO|JIOM

Ol

0G1

YIOM}aN

asuodsay ¥sp}

vy
-t

o

) N
09,

Liopsoday
ajojdwsa]
MO| IO

0eC1

yA

Jsenbay yso)

/

091

juaby
804Nn0g E_Smm
MO|[}HIOM

)

019

5,960,404

Sheet 16 of 25

Sep. 28, 1999

U.S. Patent

Vel Ol

061

wo)sAg buibessop

mmm cmo
891 | Jomses esuodsay ¥sol Joros
juaby sawiojiay >
@DD JMBS MoJptiop L
MO|})I0M < MO|}I0M
TN e
09, N\

Aiojisoday
ajo|dwa|
MO|}IOM

0%l

5,960,404

Sheet 17 of 25

Sep. 28, 1999

U.S. Patent

89/

06¢!

7
) asuodsay %sp|
PETVE N
- by
juaby Jswlo}uay e
wDD 18AIBS MO|JHIOM 934N0§ Ecomm
MO|J310M € MOIPHOM 1
| N\ Isenbay yso| Amulu\,\mu w m |
091 \ i W1 N

gcl old

061

YIOM}aN

Kiojisoday
0Ob on) 0vel ajpjdwal
MOJYIOM

5,960,404

Sheet 18 of 25

Sep. 28, 1999

U.S. Patent

Pl Ol

0ivi 0571

Jo8Uu09sIp

WIOM}aN
3pIS-22.n03

0S| omv—
w 1
asuodsay anany) asuodsay xsp|
ASo|
Qm% Jajpupy asuodsas %sp|
9|qnd
—~— Jayaypdsip jsanbas ysp|
b
el ﬂw L mwm juaby 82unog
0%)
0}}

109UU09

904Nn0g

0yl

004

5,960,404

Sheet 19 of 25

Sep. 28, 1999

U.S. Patent

Gl Ol

01G} 0$S}

JaWlIoiad

Jo3uu02sIp

YIOMIBN
opIS-JauwliojJag

0cy
(

051
,

Jaydjodsip asuodsas ysp]

Jajpupy sanbai yspj

ananp asuodsay sp|

0cl

}03UU0D

02S1

/ jusby Jawiojiay

asuodsay
ASD]

l

—

aignd

01y

jsenbay »so|

\)
095t g8

)

ovl

5,960,404

Sheet 20 of 25

Sep. 28, 1999

U.S. Patent

9 Old

0¢l
~
iy ZJawioia
AN >
Juoby Jsenba.
Jawiio}la
\ oﬁ 0g!
jsenbay ysp| = om/_
jusby BENTIIPEN
011 Jawojlsy L
0191 ~ *mgc\mm 1ol Jsonba
sy | ol —
{ \ 82.1N0§ -
1abDuDy YIOM}ON
9|0y \
jsanbau ajo. juaby B * juaby
19110345 jsanbai xsb| sjoy 92In0g
)
0¢1 owwm: /o:

091

5,960,404

Sheet 21 of 25

Sep. 28, 1999

U.S. Patent

A

1 Old

01}
/.
D10M IO, Japipmio}
[awlopiad [> juaby
(~ ysanbau |48WLI0}194
0¢L! {
0¢L1

omm~ ovii
6 asuodsa. ~
N_mﬁwow_mn_ R Z49WJ013
jsonbas
0rl
~ \\\\\
ﬁmmzcwW\&me
0G1
/ N
asuodsay xspD|
jusby
jsanbay yspj 92103
/S N
07V yiompaN 01}
09}

5,960,404

Sheet 22 of 25

Sep. 28, 1999

U.S. Patent

8l Old

02¢
J

zasuodsas 8d1AIaS AJIAIOY

0l 0181
0S| :
{ Jaboupp
asuodsay 90IN03
ASD]
juaby
dgnd 904n0S
e S
jsanbay xso| /
owi Lisenbai ao1aas AjIAljOY

Zisanbay so1nas Apaijoy

)

0l¢

7994n0g

)

00!

)

1 994n0S

Lasuodsal 901AIBS AJIAIJOY

)
0c

5,960,404

Sheet 23 of 25

Sep. 28, 1999

U.S. Patent

GIL

091

0¥l
|

6} ‘OId
S
0161 .D .
ISIPHOM
paioys
/) A \\\
)
-0}
Juaby
1ow10}J9d

jsanbay xsp|

/

jsanbay sp| 07l

juaby / A

92.n0S by

\ \/L 92N0S
!)
0Ll

GlL

5,960,404

Sheet 24 of 25

Sep. 28, 1999

U.S. Patent

e ///,\\\\\} juaby e
) bm_ 0g jewoped - >
| qusby 0502
S |iswaoyiay L /
_\ . @om JaysiBoiun /1ajsiBai
___, Jajsibalun /1s)sibal \\ 01027
\ < .4 ~
/// . /’
7 913G AJojoall(]
09 _(\,"_, 0¢0¢
0202 <
S, ~ dnyoo| ...\
. dnyoo N /
- -\ \\/// Juaby
. S 77777 saunog
991Nn0g
01}

-

Ll PRI S g

L

’

-

R

5,960,404

Sheet 25 of 25

Sep. 28, 1999

U.S. Patent

juaby Jawiiojay
~—

jusby Jsuiuiojiay

¢ Ol

juaby Jawiojiay

019

juaby
aaunog }duog
MO} HIOM

(99.nog)
OAMWU jduog
Suls MOJPHIOM

4

Kiojisoday
ajpjdwaj
MO|}HIOM

0¥l

029

9}DjuDsul

uoyooyddy

9}08.40 19pling

— 0C1¢

S

Jaubisaq

%
0biz—(@

5,960,404

1

MECHANISM FOR HETEROGENEOUS,
PEER-TO-PEER, AND DISCONNECTED
WORKFLOW OPERATION

BACKGROUND OF THE INVENTION

The present invention is related to workflow management
systems, and in particular to a distributed computer system
for workflow execution across a network infrastructure.

Workflow systems are essential to organizations that need
to automate their business processes. Workflow systems
allow organizations to specify, execute, and monitor their
business processes in an efficient manner over enterprise-
level networks. This has the net effect of improved through-
put of processes, better utilization of organizational
resources, and improved tracking of processes.

Many workflow systems are commercially available.
Even though many workflow systems exist, interoperability
across these systems is a technical problem. The systems are
monolithic and proprietary, and workflows cannot extend
beyond a single workflow system. To solve this problem, the
Workflow Management coalition (WEMC), an industry-wide
consortium of major workflow system vendors, has defined
a standard workflow architecture, described in the document
“The Workflow Reference Model” [WFMC-TC-1003]. The
model defines the major components of a workflow system
and a set of interfaces between workflow system compo-
nents. The major components it describes are a Process
Definition or Builder Tool to capture business process logic
in a high-level notation; a Workflow Server that acts as the
nerve center of the workflow system; Workflow Clients that
are used by users to view and interact with the contents of
their worklists; Workflow Applications that are invoked by
the workflow server to perform automated activities; and
finally, Administration & Monitoring Tools used to admin-
ister the execution and monitor the status of work flowing
through the workflow system using Audit Data.

The WIMC Reference Model also defines interfaces
between these components. Interface 1 (builder-server
interface) defines a common process definition format for
the interchange of static process specifications between a
Process Definition Tool and a Workflow Server [WFMC-
WGO01-1000]. Interface 2 (client-server interface) defines an
API that provides a complete range of interactions between
a Workflow Client and a Workflow Server [WFMC-TC-
1009]. These include worklist interaction, query and control
of workflow processes and their activities, and administra-
tive functions. Interface 3 (application invocation interface)
is not currently available, but is intended to describe how
applications are invoked. Interface 4 (server-server
interface) defines an API that describes the interactions
between two Workflow Servers [WFMC-TC-1012]. Inter-
actions include initiation, query and control of workflow
processes and their activities, and administrative functions.
Finally, Interface 5 (monitor-server interface) defines audit
data for administrating and monitoring a Workflow Server
[WFMC-TC-1015].

The WEMC standard has significant weaknesses that make
it unsuitable for a heterogeneous, distributed computing
environment. Specifically, the design of current workflow
systems based on the WIMC standard makes them inappro-
priate for workflow execution across wide area networks
such as the Internet, where scalability, flexibility, and
interoperability across heterogeneous systems and networks
is the needed. The weaknesses of the WEMC architecture
stem from the monolithic nature of the workflow server,
which is responsible for process execution, management of

10

15

20

25

30

35

40

45

50

55

60

65

2

the Staff Directory, binding of activities to participants and
distribution of work items to appropriate workflow partici-
pants (performing role and group resolution as necessary),
worklist management for all workflow participants who
receive work items from the server, and application invo-
cation. This leads to the following problems:

1. Participants cannot be shared by multiple workflow
systems: Since participant worklists are hidden within the
workflow server and are not externally addressable, pro-
cesses are only able to send work items to worklists that
reside in the same workflow server. Thus, in order for a
participant to participate in multiple workflows running on
heterogeneous servers, an identity and a worklist must be
maintained separately inside each workflow server the client
wishes to receive work from. In addition, the workflow
client must now manage multiple client connections to each
of these workflow servers in order to receive work. This
overloads the client application with unnecessary function-
ality; whenever a participant wishes to participate in a large
number of workflow applications from different servers, the
participant has to connect to each server and explicitly ‘pull’
work from it. Because of the complexity in the client, this
architecture is not suitable for workflow participation using
thin clients and lightweight, portable computing devices
such as personal digital assistants. From a distributed design
perspective, this is an unscalable solution.

2. Participants cannot work in disconnected mode: Even
though work items are logically owned by the workflow
participants, the WEMC architecture assigns the task of
managing work items to the workflow server. Consequently,
the participant interacts with a remotely located work item,
and each interaction between the participant and an associ-
ated work item results in a remote access (usually a Remote
Procedure Call (RPC)). While this design has potential
benefits when work items must implement some server-side
functionality, it imposes severe constraints on disconnected
workflow participation, since the network must be con-
stantly available for the participant to do any work. The
WIMC standard also involves workflow servers in client-
side application invocation, via the proposed Interface 3. For
example, if a participant needs to invoke a local application
such as a word processor as part of a work item, the
workflow server that owns the work item must invoke the
word processor on the participant’s behalf on the partici-
pant’s machine via the proposed Interface 3. The conse-
quence of this intrusive approach is that participants can
work only when directly connected to the workflow server-
they cannot operate in a disconnected mode.

3. The execution of work is not transparent: The WEMC
architecture makes clear distinctions between how the server
assigns work items to human participants, how it invokes
workflow scripts on other servers, and how it manages
application invocation. For the first, it assigns work items to
its internal worklist and expects the participant to explicitly
‘pull’ the contents of the worklist using Interface 2. For the
second, it explicitly ‘pushes’ a request to another server
using Interface 4. For the third, it performs a synchronous
procedure call using Interface 3.

Treating work in three different ways leads the server to
early judgments about the actual implementation of an
activity. This leads to a loss of transparency, and makes it
difficult for a work item at the level of the requesting server
to be dynamically bound and implemented as a workflow by
a participant domain at execution time.

U.S. Pat. No. 5,530,861 describes a task management
method that allows humans to receive and manage tasks

5,960,404

3

from different sources such as other individuals, process
engines, and application agents. The task management
scheme assumes that tasks are always performed by humans,
and provides a standard way in which a human user can
interact with tasks assigned to the user. The method does not
deal with interoperability of workflow systems. It also does
not deal with distributed workflow execution with respect to
how tasks can be treated uniformly across application
invocations, workflow script executions on heterogeneous
systems, and human participants across a network. It does
not deal with issues of disconnected operation, and
recursive, dynamic workflow execution.

SUMMARY OF THE INVENTION

The present invention deals with the use of a distributed
computer system that spans local-area networks (LANS),
wide-area networks (WANS), and global networks and pro-
vides a homogeneous view of heterogeneous workflow
systems and components. The system is called a distributed
workflow system. As a result of the present invention,
workflow scripts or applications can be executed in a
scalable manner using components scattered across the
distributed workflow system. The present invention facili-
tates peer-to-peer interactions between multiple autonomous
and proprietary workflow systems. The present invention
also facilitates disconnected or occasionally connected
operation of workflow components.

The present invention achieves the following desirable
features:

1. Workflows executing on different workflow servers can
reuse the same service providers, components, or applica-
tions on the network. Workflow participants can receive
work from and interoperate with heterogeneous, proprietary
workflow servers without using proprietary or dedicated
workflow clients.

2. Human workflow participants need to interact with a
single Worklist, which is addressable by different workflow
servers, and receives all work on behalf of the participant.

3. Workflow-enabled applications and components can be
developed and installed by third-parties on the network, and
these applications and components can be utilized by and
interoperate with multiple workflow servers.

4. Workflow servers can use a wide range of internal
workflow execution mechanisms, ranging from rule-based
workflow interpretation to control-flow based graph inter-
pretation to hardwired workflow applications or scripts, and
operate seamlessly within the distributed workflow system.

5. Heterogeneous and proprietary workflow servers
installed in different organizations can interoperate by trig-
gering pre-installed workflow applications on each other, or
by downloading workflow applications to each other on
demand.

6. Workflow participants, designers, and administrators
can participate in workflows even when they are discon-
nected or occasionally connected to the network.

7. Workflow servers are treated like any other workflow
participant; hence, work assigned to a participant may be
dynamically refined and implemented as an independent
workflow. This allows dynamic workflow decomposition, or
late-binding of work to workflows.

These improvements are accomplished by providing:

1. A workflow abstraction called Source that represents a
workflow or service requestor that generates a sequence of
service requests as part of a process execution.

2. Aworkflow abstraction called Performer that represents
a service provider (human, application, or workflow server)

10

15

20

25

30

35

40

55

60

65

4

that provides services in response to service requests gen-
erated by Sources.

3. Aworkflow component called Source Agent that acts as
a proxy to a Source. The Source Agent is always connected
to the network and represents the Source in its interactions
with Performers. The Source may be occasionally connected
to its Source Agent.

4. A workflow component called Performer Agent that
acts as a proxy to a Performer. The Performer Agent is
always connected to the network and represents the Per-
former in its interactions with Sources. The Performer may
be occasionally connected to its Performer Agent.

5. A workflow message called Task Request that repre-
sents a service request sent to a Performer; and a workflow
message called Task Response returned to a Source as a
service response.

6. A continuously available Network that allows Source
Agents and Performer Agents to communicate with each
other.

In addition, the present invention provides a mechanism
for disconnected workflow participation. An occasionally
available Source-side network allows a Source to connect
and disconnect from its Source Agent. Similarly, a
Performer-side network allows a Performer to connect and
disconnect from its Performer Agent.

The present invention provides a mechanism for
heterogeneous, autonomous, workflow systems or servers to
execute on the same distributed workflow system. Sources
may be workflow scripts executing on a wide variety of
workflow systems, or they may be hardwired process-based
programs.

The subject invention provides a mechanism for hetero-
geneous service providers or Performers to present a com-
mon interface to the Sources in the distributed workflow
system. Performers may be humans participants, or hetero-
geneous programs and applications, or workflow servers that
can execute other workflows.

The present invention provides mechanisms for Per-
former Agents and Performers to interact in different ways.
The most common interaction occurs when a Performer
Agent acts as a Worklist (or inbox) for its Performer, which
acts as a Pull client. Since the Performer Agent is address-
able on the network, various Sources can send work to the
Performer via its Performer Agent, without the Performer
having to pull work from each of them. Another interaction
mechanism is when a Performer Agent acts as a client to its
Performer, which is a program or application. Another
interaction mechanism allows the Performer Agent to act as
Push Server for the Performer.

The present invention provides a mechanism for hetero-
geneous workflow servers to implement Source and Per-
former interfaces appropriately and thus engage in peer-to-
peer workflow operation. The peer-to-peer operation allows
workflow servers to both receive work from and assign work
to other workflow servers.

The present invention provides mechanisms for workflow
scripts and workflow execution environments to be down-
loaded across domains on demand. The present invention
provides a mechanism by which Worklists associated with
Performers are managed on the network by independent
Worklist Servers, outside the scope of the Workflow Server.

The present invention provides a mechanism by which
Performer Agents can be located on the network using a
directory or trading service.

These and other improvements are set forth in the fol-
lowing detailed description. For a better understanding of

5,960,404

5

the present invention with advantages and features, refer to
the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows schematically an overview of a preferred
embodiment and particularly shows how the distributed
workflow system allows multiple workflow Source and
Performer entities to interoperate using a public communi-
cation protocol that uses Task Request and Task Response
messages.

FIG. 2A shows how a Source assigns Tasks to a
Performer, and the return of results to a Source from a
Performer.

FIG. 2B shows how a Source controls and queries tasks
on a Performer.

FIG. 3 shows how a Source exchanges Activity service
requests and responses with its Source Agent via a private
communication protocol.

FIG. 4 shows how a Performer Agent exchanges task
service requests and responses with its Performer via a
private communication protocol.

FIG. 5 shows the structure of the Task Request and Task
Response messages exchanged between Source Agents and
Performer Agents.

FIG. 6 shows different implementations of Source Agents
that permit heterogeneous Sources to participate in the
distributed workflow system.

FIG. 7 shows different implementations of Performer
Agents that permit heterogeneous Performers to participate
in the distributed workflow system.

FIG. 8A shows how a Performer Agent can act as a
Worklist for a human Performer.

FIG. 8B shows how a Performer Agent that acts as a
Worklist allows a human Performer to be addressed by
multiple, heterogeneous Sources.

FIG. 8C shows how Performer Agents that act as
Worklists can be managed on the network via dedicated
Worklist Servers, which are outside the scope of the Sources.

FIG. 9 shows how a Performer Agent can act as a client
to a backend server or application.

FIG. 10 shows how a Performer Agent can act as a Push
Server to a Push Client such as a PDA (cell-phone, pager,
etc).

FIG. 11 shows how a Performer Agent can represent a
workflow server, via which requests for executing workflow
scripts can be sent to the workflow server.

FIG. 12 shows how a Workflow Script Source Agent and
a Workflow Server Performer Agent interact in a peer-to-
peer fashion so that a parent workflow script of one Work-
flow Server can request the execution of a pre-installed
subworkflow script in another Workflow Server.

FIG. 13A shows how a Workflow Script Source Agent and
a Workflow Server Performer Agent interact in a peer-to-
peer fashion so that a parent workflow script of one Work-
flow Server can download the template of a subworkflow
script to another server and have it executed.

FIG. 13B shows how a Workflow Execution Environment
to execute a workflow script can be downloaded along with
the workflow script.

FIG. 14 shows how distributed workflow execution can
continue even when a Source is disconnected from its
Source Agent.

FIG. 15 shows how distributed workflow execution can
continue even when a Performer is disconnected from its
Performer Agent.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 16 shows how group and role managers can be
implemented in a distributed workflow system using Per-
former Agents and Source Agents.

FIG. 17 shows how a Task Request sent to a Performer
Agent can be forwarded to other Performer Agents for
execution.

FIG. 18 shows how multiple Source entities can share the
services of a single Source Agent.

FIG. 19 shows how a Performer Agent can act as a Shared
Worklist that can be accessed by multiple Performers.

FIG. 20 shows how to locate Performer Agents on the
network via a directory service.

FIG. 21 shows a Workflow Specification Environment for
Workflow Scripts.

The detailed description explains preferred embodiments
of our invention, together with advantages and features, by
way of example with reference to the following drawings.

DETAILED DESCRIPTION OF THE
INVENTION
Basic Structure of a Preferred Embodiment of the Invention

In a preferred embodiment of the present invention, the
distributed workflow system for heterogeneous, peer-to-
peer, and disconnected operation is a collection of cooper-
ating computer programs on the network, as shown in FIG.
1. Specifically, the computer programs are implemented as
distributed Java objects, and utilize the Remote Method
Invocation mechanism developed by Javasoft, Inc. for com-
munication. While the preferred embodiment makes use of
distributed object technology and the Java programming
language, any general-purpose message passing mechanism
and programming language is sufficient to implement the
features of the present invention. For the purposes of teach-
ing this invention, the following description of a preferred
embodiment uses the general concepts of messages and
entities, instead of the object-oriented terminology of
objects and method invocations.

According to the present invention, Sources 100 and
Performers 120 exchange standard messages with each other
to execute workflows on a network. A typical Source 100 is
a workflow script that executes within some workflow
system. An example of a workflow script would be a
Business Loan Approval process in a bank, which executes
as a sequence of steps whenever a business applies for a
loan. The first step would be to collect all the information
from the applicant by a customer representative. Next, two
steps can occur in parallel. The business plan can be checked
by an expert familiar with the line of business. At the same
time, the repayment plan can be checked by a banker for
feasibility. If both these steps are successful, a credit evalu-
ation firm would be notified to check the credit history of the
applicant. If it is favorable, a decision to issue a loan would
be made by the bank, and the applicant notified. In this
example, the Business Loan Approval process would be
implemented as a workflow script within a workflow
system, and the script would be called a Source 100.

In the example, Performers 120 are entities that execute
the steps, such as the customer representative, the expert, the
banker, and the credit evaluation firm. Performers 120 can
be humans, computer programs and applications,
organizations, etc. that provide services to Sources 100 such
as workflow scripts. Multiple Sources 100 can share the
services of the same Performer 120. For example, the same
credit evaluation firm could be used as a Performer 120 by
many different banks, and the same expert can evaluate
many loan applications.

5,960,404

7

According to the present invention, a Source Agent 110 is
a proxy for a Source 100 and a Performer Agent 130 is a
proxy for a Performer 120. A Source Agent 110 is a
computer program written in the Java programming lan-
guage that generates service requests on behalf of a Source
100. The Performer Agent 130 is also a computer program
written in the Java programming language that receives
service requests on behalf of a Performer 120. A Task
Request 140 is a message that contains a service request
sought by a Source 100 from a Performer 120. A Source
Agent 110 sends Task Requests 140 to appropriate Per-
former Agents 130, and receives Task Responses 150 on
behalf of the Source 100. A Performer Agent 130 receives
Task Requests 140 and returns Task Responses 150 to the
appropriate Source Agents 110. In a preferred embodiment,
Source Agents 110 and Performer Agents 130 are imple-
mented as distributed Java objects on the Network 160. The
Source Agent 110 is continuously connected to the Network
160 via a connection 115. Similarly, the Performer Agent
130 is continuously connected to the Network 160 via a
connection 135.

In a preferred embodiment, Source Agents 110 and Per-
former Agents 130 are treated as abstract interfaces written
in Java, and concrete classes with specific Source Agent 110
and Performer Agent 130 semantics are defined to imple-
ment the abstract interfaces. This is in keeping with good
object-oriented technology principles. For the purposes of
this example, Source Agents 110 and Performer Agents 130
are treated as the concrete implementations as opposed to
abstract interfaces, with no loss of generality.

Flow of Work

According to the present invention, work flows through
the distributed workflow system via a combination of private
and public messages described in FIG. 2A. A Source 100
generates Activities 230, which are its private representation
of individual units of work. To execute an Activity 230, the
Source 100 issues an activity service request message 210
using its own private communication protocol that is
received by its Source Agent 110. The Source Agent 110
translates the activity service request 210 into a standard
Task Request message format 140 and sends it to a Per-
former Agent 130. The Performer Agent 130 acknowledges
the Task Request message 140 by immediately returning a
Task Request Acknowledgment 145 containing a Task ID to
the requesting Source Agent 110, which can then use the
Task ID for future reference. Next, the Performer Agent 130
translates the public Task Request message 140 into a
private task service request message 240 for its Performer
120. The Performer 120 receives this message and creates a
Task 260, which is its private representation of a unit of
assigned work. After the Task 260 is completed, a private
task service response message 250 containing the Task
results is returned to the Performer Agent 130. The Per-
former Agent 130 translates this message into a standard
Task Response message 150 and returns it to the appropriate
Source Agent 110 that originated the Task Request message
140. The Source Agent 110 then translates the Task
Response message 140 back into a private activity service
response message 220 and sends it back to the Source 100,
thus completing the Activity 230.

The present invention also allows Sources 100 to issue
task control and task query requests to Performers 120, as
shown in FIG. 2B. When an executing Activity 230 in a
Source 100 needs to be aborted, suspended, or resumed, the
Source 100 sends a private control request 270 to its Source
Agent 110 via its private protocol. The Source Agent 110
then generates a standard Control Request 271 and sends it

10

15

20

25

30

35

40

45

50

55

60

65

8

to the Performer Agent 130 that is executing a Task 260 on
behalf of the Activity 230. Based on the contents of the
Control Request 271, the Performer Agent 130 takes the
necessary proprietary or internal action to either abort,
suspend, or resume the Task 260 on the Performer 120. Next,
the Performer Agent 130 returns a Control Response 274 to
the Source Agent 110. Similarly, the Source 100 may wish
to query the status of a Task 260 running on a Performer 120.
It sends an appropriate query request 280 to its Source Agent
110 via its private protocol. The Source Agent 110 then
generates a standard Query Request 281 and sends it to the
Performer Agent 130 that is executing the Task 260. The
Performer Agent 130 interacts with the Performer 120 to get
the status of the Task 260. Finally, the Performer Agent 130
returns the status to the requesting Source Agent 110 via a
standard Query Response 284. It is important to note that
both Control Request 271 and Query Request 281 contain
the Task ID of the Task that needs to be controlled or
queried, which is obtained as a part of the Task Request
Acknowledgment 145 in FIG. 2A.

It is important to note here that the communication
between a Source 100 and a Source Agent 110, as well as
that between a Performer 120 and Performer Agent 130,
happens via proprietary or private communication protocols.
However, the communication between Source Agents 110
and Performer Agents 130 happens via a public communi-
cation protocol that defines standard messages such as Task
Request 140 and Task Response 150 messages. This allows
arbitrary Sources 100 and Performers 120 to communicate
with each other. The other important concept is that for every
private Activity 230 generated inside a Source 100, a cor-
responding Task 260 is created and executed on a Performer
120. There is thus a one-to-one correspondence between
Activities 230 and Tasks 260.

According to the present invention, Sources 100 and
Source Agents 110 contain certain internal components, as
shown in FIG. 3. A Source 100 consists of an Activity
Generator mechanism 310 that is responsible for generating
Activities 230. Usually, this is an execution mechanism of a
workflow script. The Source Agent 110 consists of a Task
Request Dispatcher component 330 that is responsible for
receiving Activity Service Requests 210 and generating and
forwarding Task Requests 140. It also consists of a Task
Response Handler component 320 that is responsible for
receiving Task Responses 150 from the network 160 and
returning Activity Service Responses 220 to the Source 100.
It is important to note that the core function of the Source
Agent 110 is to receive responses on behalf of the Source;
an alternative implementation would be to have the Task
Request Dispatcher 330 outside the Source Agent 110, and
use the latter merely as a way to receive Task Responses 150
over the Network.

Symmetrically, according to the present invention, Per-
formers 120 and Performer Agents 130 contain certain
internal components, as shown in FIG. 4. A Performer 120
consists of a Task Handler mechanism 430 that is respon-
sible for executing Tasks 260 that correspond to Activities
230 on the Source side 100. The Performer Agent 130
consists of a Task Request Handler component 410 that is
responsible for receiving Task Requests 140 and instantiat-
ing Tasks 260 on the Performer 120. It also consists of a Task
Response Dispatcher component 420 that receives Task
Service Responses 250 from the Performer 120 and returns
Task Responses 150 to the Source 100 over the network 160.
It is important to note that core function of the Performer
Agent 130 is to receive requests on behalf of the Performer;
an alternative implementation would be to have the Task

