US006094657A

United States Patent [(1] Patent Number: 6,094,657
Hailpern et al. 451 Date of Patent: Jul. 25, 2000
[54] APPARATUS AND METHOD FOR DYNAMIC 5,845,303 12/1998 Templemancccccoevevvunnne 707/517
META-TAGGING OF COMPOUND 5,860,074 1/1999 Rowe et al. ..oorrvvveerrrrvernnnnnns 707/526
DOCUMENTS 5,864,870 1/1999 GUCK ..covvereeeeeenrinrierereenrennienne 707/104
5,933,599 8/1999 Nolan 395/200.48
. . . . 6,021,202 2/2000 Anderson et al.coooooveooeeeen. 380/25
[75] Tnventors: ﬁii‘:e?;%l}lkfxlggs’lg?gloﬁrl:eter 6,026,388 2/2000 Liddy et al. eovverorrssrerrsersn 7071
J eﬂ'rey SCthSS, Briarcliff Manor; Primary Examiner—Wayne Amsbury
Philip Shi-lung Yu, Chappaqua, all of Assistant Examiner—Thuy Pardo
N.Y. Attorney, Agent, or Firm—Ratner & Prestia
[73] Assignee: International Business Machines [57] ABSTRACT
Corporation, Armonk, N.Y. Amethod and apparatus to dynamically maintain META-tag
information specifying categorization and/or degree of com-
[21] Appl. No.: 08/942,171 pound documents, which are collections or hierarchy of
[22] Filed: Oct. 1, 1997 collections of objects (possibly web pages), for efficient
retrieval of leaf or intermediate objects with specific char-
[51] Int. CL7 oo GO6F 17/00 acteristics without the need to search any content of the
[52] US. Cl .o 707/103; 707/6; 707/100 collection. The specific characteristic and the contents of the
[58] Field of Searcheeei. 7071, 4,103, collection can change constantly both qualitatively and
707/501, 515, 3, 6, 100; 380/4, 25; 235/492,; quantitatively (including the insertion, deletion and update
395/200.48 of objects). While dynamically maintaining the META-tag
information, there are no inclusion restrictions on these
[56] References Cited compound documents, i.e., any collection can contain itself
either directly or recursively; and all objects within a
U.S. PATENT DOCUMENTS META-tagged compound document are not required to
5,664,208 9/1997 Pavley et al. wooooovoooooveevocrocrns 707/515 participate. The PICS protocol may be used to specify this
5,680,452 10/1997 Shantonceceeeeeereeeeeeeenns 380/4 META-tag information with both categorization and degree;
5,740,455 4/1998 Pavley et al. . .. 707/515 to reflect the obsolescence, currency or freshness of an
5,748,954 5/1998 Mauldinccocovrvrirriirirernienninns 707/10 objects; to validate a given object using a digital signature;
5,757,370 5/1998 Amro et al. 395/341 and to enable charging for the META-tag service. Aggre-
5,774,888 6/1998 Light e 707/5 gation methods are provided to enable maximization,
g’gg};%i g/ iggg gomlyla ma 0 3 420375{; minimization, and averaging; to limit the propagation of
5,802,299 9;1998 L(())gf:l) el :"595/206.48 META-tags; and to handle the time-out of META-tag and
5,804,810 9/1998 Woolley et al. .. 235492 information validity.
5,826,261 10/1998 SPENCercoovvevevvmveierveneneennns 707/5
5,838,906 11/1998 Doyle et al. .c.cocovreureuecuene 395/200.32 14 Claims, 22 Drawing Sheets

2000

CPU

2020 MEMORY

2010 N

COMPOUND
DOCUMENT
HANDLER

T0-00 | 2940
LisT

2050
UPDATED
LST _ [5060
/

HTTP REQUEST
HANDLER

META-TAG 2070
MODULE

COMPOUND
DOCUMENT
DATABASE

2030
-/

2080
L/

META-TAG
ADDITION
HANDLER

2090
L/

2100
I/

META-TAG
DELETION
HANDLER

U.S. Patent Jul. 25,2000 Sheet 1 of 22 6,094,657

/,1000 /,1010

(WEB SERVER) (WEB SERVE@

INTERNET

U.S. Patent Jul. 25,2000 Sheet 2 of 22 6,094,657

4000

WP— WEB PAGE
4008 D— ELECTRONIC
RESOURCE

U.S. Patent Jul. 25,2000 Sheet 3 of 22 6,094,657

A— NEWS
ARTICLE

NG— NNTP
3008 NEWSGROUP

U.S. Patent Jul. 25,2000 Sheet 4 of 22 6,094,657

2020~ MEMORY

COMPOUND
DOCUMENT | 290
HANDLER

2040
TO-DO)
LIST

2050
UPDATED |_/
2000 LIST {2060

HTTP REQUEST
CPU HANDLER
2070

META—TAG
MODULE

2010 COMPOUND | 2080
DOCUMENT | _/
DATABASE

META-TAG | 2090
ADDITION | _J
HANDLER

META—TAG | 2100
DELETION |—/
HANDLER

FIG. 4

U.S. Patent

WAIT | 4501

FOR
INPUT

COMPOUND

DOCUMENT

REQUEST
?

YES

COMPOUND
DOCUMENT
HANDLER

Jul. 25, 2000

4503

YES

Sheet 5 of 22

4505

REQUEST
HANDLER

HTTP

6,094,657

4506

HANDLER

MISC

!

1.

FIG. 4A

U.S. Patent Jul. 25,2000 Sheet 6 of 22

b

WAIT
FOR
INPUT

| ~5000

|

CLEAR
TO DO AND

UPDATED LISTS

5010

6,094,657

A
ADD
REQUEST
HANDLER
REQUEST
Y HANDLER 5080
’
UPDATE
REQUEST MISC
Y HANDLER | |HANDLER
- - —g + *

U.S. Patent

Jul. 25, 2000

|

SET CIMT

Sheet 7 of 22

2 CURL'S /‘6000

IMT

|

SET CURL'S
EMT=NIMT

|

DELETION
HANDLER

!

META-TAG e 6002

META-TAG Ve 6003

ADDITION
HANDLER

|

ADD CURL
TO UPDATED
LIST

|

ADD ALL CURL'S /‘6005
PARENTS TO TO DO
OTHER THAN CURL

FIG. 6A

6,094,657

U.S. Patent

Jul. 25, 2000 Sheet 8 of 22

6020

YES IS

TO DO UST
EMPTY
?

NO ~6030

DELETE NEXT
MEMBER OF
TO DO LIST AND
ASSIGN TO
PURL

* e 6040

META-TAG
DELETION
HANDLER

Y 6050

META—-TAG
ADDITION
HANDLER

+ /6060

ADD PURL
TO UPDATED
LIST

4 ~6070
ADD ALL OF

PURL'S PARENTS
TO TO-DO THAT

AREN'T MEMBERS
OF UPDATED

L

FIG. 6B

6,094,657

U.S. Patent Jul. 25,2000 Sheet 9 of 22 6,094,657

v

ADD CURL TO
UPDATED wLIST [~ /000

Y

ADD PURL TO
To-po ust [~ 7010

Y

DELETE CURL AS
CHILD OF PURL |_-~7020
IN DATABASE

Y

DELETE PURL AS
PARENT OF CURL |—7030
IN DATABASE

Y

ADD ALL PARENTS
OF CURL TO |_-7040

TO-DO LIST OTHER
THAN CURL

Y

|
DELETE NEXT
MEMBER OF TO-DO
LIST AND AssieN [720
TO PURL

Y

META-TAG
DELETION {_~7060 A
HANDLER

Y

ADD PURL TO
UPDATED LiST [~ 7070

Y

ADD ALL PARENTS OF
PURL TO TO—-DO LIST
WHICH ARE NOT MEMBERS [~ /020

OF THE UPDATED LIST

U.S. Patent

Jul. 25, 2000

'

UPDATED LIST

Y

TO—-DO LIST

Y

Sheet 10 of 22

ADD CURL TO | _g000

ADD PURL TO 8010

ADD PURL AS
PARENT OF CURL
IN DATABASE

_~8020

Y

ADD CURL AS
CHILD OF PURL
IN DATABASE

—8030

Y

LIST OTHER THAN
CURL

ADD ALL OF CURL’
PARENTS TO TO DO| 8040

S

Y

I
DELETE NEXT

LIST AND ASSIGN
TO PURL

MEMBER OF TO-DO | _~8050

Y

META-TAG

HANDLER

Y

UPDATED LIST

Y

ADDITION |_~8060 A

ADD PURL TO | _-8070

oA At O BURLS
LIST WHICH ARE NoT 8080
IN THE UPDATED LIST

S

6,094,657

U.S. Patent Jul. 25, 2000 Sheet 11 of 22 6,094,657

s

WAIT 8100
FoR [

REQUEST

MAXIMIZATION

ADDITION
ROUTINE
MINIMIZATION
ADDITION
\ ROUTINE YES 8170
8160 /
AVERAGING MISC
ADDITION ADDITION
ROUTINE ROUTINE
- - - + +

FIG. 8A

U.S. Patent Jul. 25, 2000 Sheet 12 of 22 6,094,657

b

WAIT 8200
FOR

REQUEST

8220
MAXIMIZATION
DELETION
ROUTINE
MINIMIZATION
DELETION
8270
ROUTINE YES
! 8260 r/
AVERAGING MISC

DELETION DELETION
ROUTINE ROUTINE

. - .V '
FIG. 8B

U.S. Patent Jul. 25,2000

.

AWAIT | 9000

REQUEST

|

Sheet 13 of 22 6,094,657

PROCESS REQUEST
UNTIL POINT
WHERE RESPONSE
IS RETURNED TO

| _-9010

A REQUESTER
9020
NO YES
 ~9040
RETURN .
ERROR | 9030 %ﬁggUQQS
NOTIFICATION

FIG. 9

U.S. Patent Jul. 25,2000 Sheet 14 of 22

10000 IS
RURL IN
COMPOUND
DOCUMENT

DATABASE
?

YES

RETRIEVE
10010~ | AMT'S OF
RURL AND

ITS IMMEDIATE
CHILDREN

4

10020 \ BUILD
PICS
LABEL

+

10030\ ADD PICS
LABEL TO
HTTP HEADER

#

FIG. 10

6,094,657

U.S. Patent

Jul. 25, 2000

!

SET CV
FROM CURL'S

AMT

!

SET NV

Sheet 15 of 22

6,094,657

_~11000

FROM PASSED [—11010

PICS LABEL

11020

NO
SET MV

IMT

¢

FROM CURL'S L—11030

SET PURL-CURL

11040

THE AUX1
LIST

|

ADD PURL TO | 11050

ADD ALL OF

AO AUX2 LIST
THAT ARE NOT
IN AUX1 LIST

PULRL'S CHILDREN| _ 11060

FIG. I1A

U.S. Patent Jul. 25, 2000 Sheet 16 of 22 6,094,657

(2)

—
11090
A + ya
SET CURL'S
AMT USING
SET PURL MV
TO NEXT
ENTRY IN AUX2 *
S5 oV /11100
FROM PURL'S
AMT
11120
<O Tvsmy
?
YES 11130
S
)\ SET MV=CV
T

FIG. |IB

U.S. Patent Jul. 25, 2000 Sheet 17 of 22 6,094,657

!

SET CV
FROM CURL's|~" 12000

AMT

!

SET NV
FROM PASSED |—12010
PICS LABEL

SET MV

FROM CURL'S |—12030
IMT

#

SET PURL=CURL

| ~12040

ADD PURL TO
THE AUX1 12030

LIST

| 4

ADD ALL OF
PURL'S CHILDREN
To AUX2 usT = |~ 12060
THAT ARE NOT
IN AUX1 LIST

@ FIG. I2A

U.S. Patent Jul. 25, 2000 Sheet 18 of 22 6,094,657

(2)

12070
YES
4.:
12090
| + Vs
NO 12080 |SET CURL'S
s AMT USING
SET PURL MV
TO NEXT
ENTRY IN AUX2 *
SET cv |, 12100
FROM PURL'S
AMT
12110

<NO ~Tvemy
?

YES /-12120

A SET Mv=CV

1

FIG. 12B

U.S. Patent Jul. 25, 2000 Sheet 19 of 22 6,094,657

13020~ MEMORY

13000 1 5030
CLIENT—SIDE
CPU | PROXY
META—TAG - 13040
a MODULE +——1 |
13010 HTe | 13050
CLENT

FIG. 13

U.S. Patent Jul. 25, 2000 Sheet 20 of 22 6,094,657

R

WAIT FOR
USER
REQUEST

_—14000

'

A FORMATS
REQUEST

HTTP CLIENT

_—~14010

#

PROXY

CLIENT-SIDE _-14020

#

DISPLAYS
RESPONSE

HTTP CLIENT

_—14030

1
FIG. 14

U.S. Patent Jul. 25, 2000 Sheet 21 of 22 6,094,657

W

WAIT FOR
REQUEST

_~15000

|

PROCESS

A REQUEST UP | ~15010
UNTIL RESPONSE
IS RETURNED

+

META—-TAG
MODULE

L~15020

|

RETURN
RESPONSE
TO CLIENT

_-15030

S

FIG. 15

U.S. Patent Jul. 25, 2000 Sheet 22 of 22 6,094,657

16000

SUCCESS NQ
?
16010
NO
META—-TAGGED >

?

MODIFY

| Response

ANNOTATING

180201 A PPLICABLE
LINKS

4

FIG. |6

6,094,657

1

APPARATUS AND METHOD FOR DYNAMIC
META-TAGGING OF COMPOUND
DOCUMENTS

FIELD OF THE INVENTION

The present invention is related to an improved data
processing system. A particular aspect of the present inven-
tion is related to a dynamic method of META-tagging
compound documents whose contents change both quanti-
tatively and qualitatively. A more particular aspect of the
present invention is related to dynamic META-tagging of
compound documents on the World Wide Web.

GLOSSARY OF TERMS

While dictionary meanings are also implied by certain
terms used here, the following glossary of some terms may
be useful.

Internet: The network of networks and gateways that use
the TCP/IP suite of protocols.

Client: A client is a computer which issues commands to
the server which performs the task associated with the
command.

Server: Any computer that performs a task at the com-
mand of another computer is a server. A Web server typically
supports one or more clients.

World Wide Web (WWW or Web): The Internet’s appli-
cation that lets users seeking information on the Internet
switch connection from server to server and database to
database by choosing (“clicking on”) highlighted words or
phrases of interest (known as hyperlinks). An Internet
WWW server supports clients and provides information to
the clients. The Web, which can be considered as the Internet
with all of the resources addressed as URLs, uses HTML to
display the information corresponding to URLs, and pro-
vides a point-and-click interface to other URLs.

Universal Resource Locator (URL): The URL is the
method to uniquely identify or address information on the
Internet, and may be considered a Web document version of
an e-mail address. URLs may be cumbersome if they are
associated with documents nested deeply within other docu-
ments. URLs may be accessed with a Hyperlink. An
example of a URL identification is “http://
www.philipyu.com:80/table.html”. The URL has four com-
ponents. Starting from the left of the example, the first
component specifies the protocol to use (in this case http),
separated from the rest of the locator by a “:”. The next
component is the hostname or IP address of the target host;
this component is delimited by the double slash “//” on the
left and on the right by a single slash “/” (or optionally a “:”)
The port number is an optional component, and is delimited
on the left from the hostname by a “:” and on the right by
a single slash “/”. The fourth component is the actual file
name or program name (in this example, table.html). In this
example, the “.htm]” extension means that this is an HTML
file.

HyperText Markup Language (HTML): HTML is a lan-
guage used by Web servers to create and connect documents
that are viewed by Web clients. HTML uses Hypertext
documents.

Hypertext transfer protocol (HTTP): HTTP is an example
of a stateless protocol, in which every request from a client
to a server is treated independently. The server has no record
of previous connections. At the beginning of a URL, “http:”
indicates the requesting client and target server should
communicate using the HTTP protocol regarding the speci-
fied resource.

10

15

20

25

30

35

40

45

50

55

60

65

2

Internet Browser or Web browser: A graphical interface
tool that runs Internet protocols such as HTTP, and display
results on the customers screen. The browser can act as an
Internet tour guide, complete with pictorial desktops, direc-
tories and search tools used when a user “surfs” the Internet.
In this application the Web browser is a client service which
communicates with the World Wide Web.

Client cache: Client caches are typically used as a primary
group (caches) of objects accessed by the client. In the
WWW environment, client caches are typically imple-
mented by web browsers and may cache objects accessed
during a current invocation, i.e., a non persistent cache, or
may cache objects across invocations.

Caching proxies: Specialized servers in a network which
act as agents on the behalf of the client to locate an object,
possibly returning a cached copy. Caching proxies typically
serve as secondary or higher level caches, because they are
invoked as a result of cache misses from client caches.

HTTP Daemon (HTTPD): A server having Hypertext
Transfer Protocol and Common Gateway Interface capabil-
ity. The HTTPD is typically supported by an access agent
which provides the hardware connections to machines on the
Internet and access to the Internet, such as TCP/IP cou-
plings.

META-tagging: The association of information with a
given object. For example, in HTTP, information can be
associated with both requests and responses in the fields of
the HTTP header. For example, an HTTP server can specify
the URL from which a returned page was requested.

BACKGROUND OF THE INVENTION

The rapid increase in popularity of the World Wide Web
(WWW or web) has led to a corresponding increase in the
amount of data available to users. Due to this massive
amount of information, many users suffer since it has
become increasingly difficult to find information they want
since there are so many choices. Further, it has become
increasingly difficult to choose documents having groups of
objects (compound documents) appropriate to particular
audiences (e.g., elementary school children) who aren’t yet
ready to view or read certain types of material (e.g.,
violence). This is especially true for collections of electronic
data, such as compound documents, whose contents fre-
quently change, not just quantitatively, but qualitatively as
well.

One example of such a compound document is an NNTP
newsgroup. The content of such a compound document, the
articles, changes daily, because new articles are added and
older ones deleted. Although the articles for a given news-
group should share a particular theme (e.g., alt.rec.guitar
should provide discussions related to guitars, songs and
guitar playing), a given topic or thread (such as a flame war)
inappropriate or irrelevant to a given user might appear one
day; last for a few days and then disappear. Therefore, a user
cannot depend upon the titles of NNTP newsgroups during
a search for information since the titles may be unresponsive
to the actual contents of the newsgroups.

Another example of uncertainty of information within
compound documents is a web site that provides a list of
HTTP links to very new resources relevant to the web site
(known as a “cool links” list; e.g., a list of links to neat new
java applets from the java.sun.com page). As with the
example above, a user cannot depend on the name or
description of the cool link’s web site in searching for data,
since neither is responsive to the contents of the cool links
collection.

6,094,657

3

Many users employ search tools (e.g., http://
www.altavista.com) which return links to resources match-
ing a user’s query. For example, the query:

Query; Find text containing: “Java” AND “applications”

AND “business”

returns an answer which is a list of data objects whose
contents match the query. A problem encountered is only the
immediate contents of data objects is checked during the
query; the contents of any children of the data objects (either
immediate or recursive) is not taken into account by the
query. Thus, such search tools don’t allow users to search for
collections of data efficiently or accurately, only atomic data
objects (i.e., objects without children).

Another method of information retrieval is that provided
by yahoo, which is well known in the art and a description
may be found, for example, at http://www.yahoo.com. With
this method, an Internet service maps the compound docu-
ments of its information providing customers into a concept
taxonomy. Information seekers can then navigate through
the taxonomy to try and find the information they seek. Even
though this method provides a useful device by which to
navigate, it does not make provisions for compound docu-
ments whose contents change. A given compound docu-
ment’s location or locations in the taxonomy are determined
when the compound document is added and can be changed
only through manual intervention. Thus, this system is also
unresponsive to compound document’s whose contents
change dynamically.

Thus, there is a need for dynamically providing labels to
objects within compound documents, called dynamic
META-tagging of compound documents, whose contents
are not assumed static and which provides accurate META-
tags at all levels of granularity (data object to collection).

SUMMARY OF THE INVENTION

An apparatus and method for categorizing a group of
objects which together comprise an object set, wherein each
object in the set includes a header in which a categorization
value for that respective object is stored. The apparatus and
method further include storage of a global rating value for all
objects in the object set; and selective modification of the
global rating value if at least one of a) the rating of any
object in the object set is altered, b) at least one additional
object is added to the object set, and c) at least one of the
group of objects is deleted from the object set.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present
invention will become apparent from the following detailed
description, taken in conjunction with the accompanying
drawings, wherein:

FIG. 1 is a diagram of a high-level architecture of a
client-server hierarchy having features of the present inven-
tion;

FIG. 2 illustrates an example of a compound document;

FIG. 3 illustrates an example of a strictly hierarchical
compound document;

FIG. 4 depicts an example of the server of FIG. 1;
FIG. 4a depicts an example of the server logic;

FIG. 5 depicts an example of the compound document
handler;

FIG. 6 depicts an example of the update request handler;
FIG. 7 depicts an example of the delete request handler;
FIG. 8 depicts an example of the add request handler;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 8a depicts an example of META-tag addition han-
dler;

FIG. 8b depicts an example of META-tag deletion han-
dler;

FIG. 9 depicts an example of the HTTP request handler;

FIG. 10 depicts an example of the META-tag module’s
workflow;

FIG. 11 depicts an example of a deletion routine for
maximization aggregation;

FIG. 12 depicts an example of a deletion routine for
minimization aggregation;

FIG. 13 depicts an example of the client of FIG. 1;

FIG. 14 depicts an example of the client logic;

FIG. 15 depicts an example of the client-side proxy logic;

FIG. 16 depicts an example of the client-side proxy
META-tag module logic.

DETAILED DESCRIPTION

FIG. 1 depicts an example of an overall architecture of
servers and clients having features of one or more exemplary
embodiments of the present invention. As shown, a web
(http) client (1030 . . . 1040) communicates with a web (http)
server (1000 . . . 1020) through the Internet (1050). By way
of example only, assume the only one server (1020) imple-
ments the following described exemplary embodiments of
the current invention, while the other servers (1000 . . .
1010) act only as conventional web servers. Further, by way
of example only, assume that the server (1020) has links
within its web pages to other servers (1000 . . . 1010). One
skilled in the art will appreciate that a given server may have
links to any number of other servers.

Note that FIG. 1 only conveys a logical connection
diagram to represent the information flow of objects and
requests; it does not represent a physical connection dia-
gram. One skilled in the art will appreciate that the actual
physical layout may include any number of network devices,
and may contain subnets, routers, intranets and firewalls.

For the following description of a preferred embodiment
of the present invention, the syntax and semantics of the
conversations between the web servers 1000, 1010 and 1020
and clients 1030, 1040 is defined by the Hypertext Transfer
Protocol, which is described in RFC 2068, R Fielding et al.,
“Hypertext Transfer Protocol—HTTP/1.1,” filed January
1997, which may be found via URL: http://www.cis.ohio-
state.edu/htbin/rfc/rfc2068.html, or refer to D. E. Comer,
Interworking with TCP/IP: Principles, Protocols, and
Architecture, Prentice Hall, Englewood Cliffs, N.J., 1988,
for details on retrieving RFCs using electronic mail and FTP.
Also, the protocol for communication is TCP/IP.

In overview of the communication establishment, a client
(1040 . . . 1050) first connects to the server’s (1000 . . . 1020)
HTTP port. The client can then place a request, the general
form of which is:

<request> <URL> <HTTP-Version> CRLF
<request header tag #1>: <request header value #1> CRLF
<request header tag #2>: <request header value #2> CRLF
<request header tag #3>: <request header value #3> CRLF
CRLF

where, among others, <request> can be “HEAD,”
<HTTP-Version>, which specifies the version of HTTP, can
be “HTTP/1.0,” <request header tag> can be any string of
non-whitespace characters, and <request header value #x>
can be any string of characters. The specification for such a
request are well known in the art and may be found in, for
example, RFC 2068.

6,094,657

5

Note that any number of lines of the form:
<request header tag #x>: <request header value #x>
CRLF
can be included in any given request.

As defined in the HTTP protocol specification, in
response to a request from a client, a server’s reply has the
following general form:

<HTTP-Version> <Status Code> <Comment> CRLF

<response header tag #1>: <response header value #1>
CRLF

<response header tag #2>: <response header value #2>
CRLF

CRLF

[Response data block]

where: <HTTP-Version> specifies the version of HTTP
the client is running, <Status Code> indicates how well the
server was able to fulfill the client’s request, <Comment> is
an optional entry consisting of a string which indicates the
server’s the reason for the returned status code, <response
header tag #x> is a string of non-whitespace characters,
<response header value #x> is a string of characters, and
[Response data block] is a block of data. See RFC 2068 for
details. Note that a server’s response can contain any num-
ber of lines of the form:

<response header tag #x>: <response header value #x>

CRLF
in a given response.

For example, a client might connect to www.ibm.com and
place the following request in order to determine how large
the data block returned to the client will be:

HEAD/HTTP/1.1

Connection: close
for which the request header; “Connection: close” indicates
that the server can break the connection to the client after it
has sent the requested data.

In response, www.ibm.com might respond:

HTTP/1.0 200 OK

Server: www.ibm.com

Date: Tuesday, May 6, 1997 19:05:16 GMT

Content-Type; text/html

Content-Length: 1767
indicating that the data block returned would be 1767 bytes
long.

An aspect of the current invention is a method to specify
particular information, which for the described embodi-
ments employs placing information in the META element
specified in the HTTP protocol, which may be called META-
tags. In an exemplary Internet implementation, the Platform
for Internet Content Selection (PICS) provides a specifica-
tion for sending META-information concerning electronic
content. PICS is a World Wide Web Consortium (W3C)
Protocol Recommendation, and is described, for example, in
Rating Services and Rating Systems (and Their Machine
Readable Descriptions), version 1.1, W3C Recommendation
Oct. 31, 1996, and in PICS Label Distribution Label Syntax
and Communication Protocols, version 1.1, W3C Recom-
mendation Oct. 31, 1996 (see also http:/www.w3.org/
PICS).

The recommendation defined within PICS may be
employed as a method of sending values-based rating labels,
such as “How much nudity is associated with this content,”
but the format and meaning of the META-information itself
is fully general. For PICS, META-information about elec-
tronic content is grouped according to the “rating service” or
producer-and-intended-usage of the information, and within

10

15

20

25

30

35

40

45

50

55

60

65

6

one such group, any number of categories or dimensions of
information may be transmitted.

Each category has a range of permitted values, and for a
specific piece of content, a particular category may have a
single value or multiple values. In addition, the META-
information group, known as a “PICS label”, may contain
expiration information. The PICS recommendation includes
permitting a PICS label to apply to more than one piece of
electronic content. Each PICS label for a specific piece of
electronic content may be added or removed from the
content independently. HTTP has been augmented with
request headers and response headers that support PICS.
Many other technical bodies which define other common
application protocols, such as NNTP, are now also consid-
ering adding PICS support.

Suppose, by way of example only, that the participating
server’s (1020) hostname is foo.bar.com, and that one of the
image files it returns is image.gif, and that this file has a
single PICS label whose “rating service” field indicates it
contains values-based rating labels according to the Recre-
ational Software Advisory Council (RSAC) rating system.
As per the PICS protocol, this PICS label can be passed to
clients requesting the image file by including it in the
response’s response header Such a response may have the
following structure:

HTTP/1.1 200 OK

Server: foo.bar.com

Date: Tuesday, May 6, 1997 19:05:16 GMT

File-MIME-Type: image/gif

Content-Length: 1734

PICS-Label: (PICS-1.1 “http://www.rsac.org/

ratingsv01.html”

label for “http://foo.bar.com/image.gif”
exp “1997.07.01T08:15-0500”
r(n4s3v210)

where: RSAC’s rating system can be retrieved from
http://www.rsac.org/ratingsvOl.html, r (n 4 s 3 v 210) is the
rating field, ‘n” ‘s’ ‘v’ ‘1’ are transmit names for various
META-information types; and the applicable values for this
content are 4 (for n=nudity), 3 (for s=sex), 2 (for v=violence)
and O (for I=language).

In the preferred implementation of the current invention,
three types of META-tags are defined: 1) an External
META-tag (EMT); 2) an Individual META-tag (IMT); and
3) an Aggregate META-tag (AMT).

The EMT is a conventional PICS label which describes a
data object’s (or document node’s) immediate contents. This
PICS label, either included in the node’s HTTP or HTML
header, or returned by a label bureau, is often (but not
necessarily) created by an external rating service (e.g.,
RSAC). Those skilled in the art will appreciate that there
may be several EMTs for a given data object, each defined
by a different rating service.

The second type of META-tag, the IMT, is stored and
maintained in a compound document database (2080)
(described below in detail with reference to FIG. 4), and also
only describes the node’s immediate contents. The only
necessary difference between the IMT and EMT is that the
IMT is maintained in the compound document database
(2080). Those skilled in the art will appreciate that a node’s
IMT can be the combination of several EMTs, in cases
where a node has more that one.

The third type of META-tag is the AMT which is also
stored and maintained in the compound document database
(2080). This META-tag provides a description of a node
which is the aggregation of the given node’s IMT along with

6,094,657

7

the AMTs of its immediate children. Thus, a node’s AMT
describes not only the contents of the given node, but the
contents of all its children, direct and recursive, as well.

Note that for atomic data objects (i.e., those without any
links to other objects), the EMT, IMT and AMT may be
equivalent. For collection nodes (i.e., nodes containing links
to other nodes), however, the AMT reflects not only the IMT,
but the aggregated sum of all of the collection’s children as
well. So, for example, the AMT of a cool-links collection
web page reflects both the IMT of the collection’s web page
and the AMTs of the linked web sites as well.

When an object, or document node, which includes
META-tag information is manipulated, for example, by
adding, deleting or changing a file, the object’s EMT which
is to be included in the META-tag aggregation provided by
the current invention may also be updated. Whenever a
document node is so manipulated, the compound document
handler (2030) described below with reference to FIG. 5,
must be appropriately invoked so that the necessary updates
are made to the compound document database (2080).
Consequently, requests to this handler include: 1) an Add
request to add a link to a child node; 2) a Delete request to
delete a link to a child node; and 3) an Update request to
change a document node’s IMT. The Add, Delete and
Update request functions of the compound document han-
dler (2030) are described below with references to FIGS. 6,
7, and 8 respectively.

Thus, for example, if a document node’s EMT changes,
the update request handler is called, which incorporates this
change into the node’s IMT and AMT, along with the AMTs
of all of the node’s parents (both immediate and recursive).

FIG. 2 depicts an example of a web site, which is an
instance of a compound document for which the present
invention may be employed. The data objects, or document
nodes, of this web site are both web pages (i.e., data
collections with 0 or more child nodes) and atomic data
objects (i.e., data objects unable to have child nodes). The
top data object of FIG. 2, or root node (4000) is web page
which contains links to two web pages, 4001 and 4002; as
well as a link to data object 4004. Child node 4001 contains
links to data objects 4005 and 4006, and to web pages 4000
and 4003. Note that web page 4001 contains a link to 4000,
its own parent, a common practice in the Internet’s World
Wide Web. Web page 4002 contains links to data objects
4006 and 4009. Note that both nodes 4001 and 4002 contain
links to data object 4006. Node 4003 contains links to data
objects 4007 and 4008; and to web pages 4001 (its parent)
and 4000 (node 4001°s parent). Note that not all nodes of a
web site are required to participate in the META-tagging
provided by the current invention.

FIG. 4 depicts a more detailed example of the architecture
of the server 1020 of FIG. 1. As is conventional, this server
includes a CPU 2000, a disk 2010 such as a magnetic,
electronic, or optical storage media for persistent data and/or
program/code storage, and a memory 2020 for dynamic
access and/or execution of the data and/or programs by the
CPU 2000. Those skilled in the art will appreciate that
within the spirit and scope of the present invention, one or
more of the components located in the memory 2020 could
be accessed and maintained directly via disk 2010, the
network 1050, another server, or could be distributed across
a plurality of servers.

Five components of this server 1020, preferably embod-
ied as software executables on CPU 2000, are: 1) a com-
pound document handler 2030; 2) an HTTP request handler
2060; 3) a compound document database 2080; 4) a META-
tag addition handler 2090; and 5) a META-tag deletion
handler 2100.

10

15

20

25

30

35

40

45

50

55

60

65

8

The compound document handler 2030, META-tag addi-
tion handler 2090, META-tag deletion handler 2100, and
HTTP request handler 2060 will be described in more detail
below with reference to FIGS. 44, 5, 8a, 8b, and 9 respec-
tively.

The memory 2020 also contains two other structures
relevant to features of the present invention. As will be
discussed in more detail with reference to FIGS. 5, 6, 7 and
8, a To Do list 2040 and Updated list 2050 are maintained
within which the compound document handler’s routines
which can store and maintain lists of URLs for the process-
ing steps of the document handler.

The compound document database 2080 provides for
storage, update and retrieval of compound document nodes’
information. Each node is identified by its URL, and the
database cross references each URL with a list of the URLs
of child nodes and a list of the URLSs of parent nodes, as well
as an individual META-tag (IMT) and an aggregated
META-tag (AMT);

Therefore, referring to FIG. 2, for example, a request to
the compound document database 2080 would return the
URLSs of nodes 4001 and 4002 in response to a request for
the child nodes of node (4000).

FIG. 4a depicts an example of server logic having features
of the present invention As depicted, in step 4501 the web
server waits for an input request. In step 4502. if the input
is a compound document modification request, the com-
pound document handler 2030 is invoked at Step 4503. A
detailed example of the compound document handler 2030
is described below with reference to FIG. 5. In step 4505, if
the input received is an HTTP client request, the HTTP
request handler 2060 is invoked in step 4505. Such requests
include all conventional HTTP requests. A detailed example
of the HTTP request handler 2060 is described below with
reference to FIG. 9. In step 4504, for other types of inputs
which are not the focus of the present invention (e.g.,
experimental HTTP requests) an appropriate miscellaneous
handler 4506 may be invoked.

FIG. § depicts an example of the compound document
handler 2030. As previously mentioned, whenever an object,
or document node, whose META-tag is to be included in the
META-tag aggregation and maintenance provided by the
current invention is manipulated, one of the compound
document handler’s request handlers must be invoked to
update the compound document database 2080.

With reference to FIG. §, the three request handlers are the
Update request handler 5070, which allows the user to
change the META-tag of one of the compound document’s
nodes; the Delete request handler 5050, which allows the
user to delete a child node one of the compound document’s
nodes; and an Add request handler 5030, which allows the
user to add a child node to one of the compound document’s
nodes.

Those skilled in the art will appreciate that requests to this
compound document handler 2030 may be invoked auto-
matically in situations where data objects were added and
deleted automatically. An NNTP (news) server, for example,
may be modified so that whenever a new article was added
to a newsgroup, the add request handler (described below
with reference to FIG. 5) would be invoked. Similarly,
whenever a given article was deleted (e.g., due to timing
out), the delete request handler (described below with ref-
erence to FIG. 7) would be invoked.

As FIG. 5 depicts, in step 5000, the compound document
handler 2030 waits for input requests. In step 5010, after
receiving such a request, the handler clears all entries from
the To Do list 2040 and Updated list 2050. In step 5020, if

6,094,657

9

the request is an add request, then the add request handler is
invoked in step 5030. A detailed example of the add request
handler is described with reference to FIG. 8. In step 5040,
if the request is a delete request, then the delete request
handler is invoked in step 5050. A detailed example of the
add request handler is described with reference to FIG. 7. In
step 5060, if the request is an update request, then the update
request handler is invoked in step 5070. A detailed example
of the add update handler is described with reference to FIG.
6. In step 5060, for other types of inputs which are not the
focus of the present invention (e.g., a request that calculates
how often nodes are deleted) an appropriate miscellaneous
handler can be invoked in step 5080.

FIG. 6 depicts an example of the update request handler
5070, which enables the IMT of a node to be set or changed,
and have this change reflected in all parent collections (both
immediate and recursive). This capability enables an auto-
matic agent, for example, to check the EMT of a particular
set of nodes, and automatically update any objects whose
EMT has changed. In this example, and in FIG. 6, CURL is
a URL of the node whose AMT is to be changed; CIMT is
the node’s current IMT, NIMT is the node’s new IMT; and
PURL is a variable used to hold URL of parent node.

In 6000, CURL’s IMT is retrieved from the compound
document database 2080 and assigned to CIMT. In step
6002, CURL’s IMT is set equal to NIMT in the compound
document database 2080. In step 6002, the META-tag
deletion request handlers invoked, being passed, CURL, and
CIMT. A detailed example of the META-tag deletion request
handler is given below with reference to FIG. 8b. This step
eliminates the contribution of the CURL’s old IMT from
CURL’s AMT. In step 6003, the META-tag addition request
handler is invoked, being passed CURL and NIMT. A
detailed example of the addition request handler is given
below with reference to FIG. 8a. This step incorporates the
CURL’s new IMT into CURL’s AMT. In step 6004, CURL
is added to the Updated list 2050. In step 6005, the URL’s
of all of CURL’s parents are retrieved from the compound
document database 2080 and added to the To Do list 2040.
In step 6020, the update request handler 5070 exits if the To
Do list 2040 is empty (i.e., has no further entries).

If there are remaining members of the To Do list 2040,
then, in step 6030, the next member, where “next” is
determined by FIFO ordering, is assigned to PURL and
deleted from the To Do list (2040). In step 6040, the
META-tag deletion handler is invoked, being passed PURL
and CIMT. This step eliminates the contribution of CURL’s
old IMT from PURL’s AMT. A detailed example of the
META-tag deletion handler is described below with refer-
ence to FIG. 10b. Then, in step 6050, the META-tag addition
handler is invoked, being passed PURL and NIMT. This step
incorporates the CURL’s new IMT into PURL’s AMT A
detailed description of the META-tag addition handler is
given below with reference to FIG. 8a. Next, in step 6060,
PURL is added to the Updated list 2050. In Step 6070 the
URL’s of all of PURL’s parent nodes are retrieved from the
compound document database 2080, and all those that are
not members of the Updated list 2050 are added to the To Do
list 2040. The workflow then continues, starting at step
6020.

FIG. 7 depicts an example of the delete request handler
5050 which allows compound document administrators,
both human and automatic, to delete the specification of one
node as the child of another node, and have this link deletion
reflected in all parent object collections (both immediate and
recursive). This capability enables an automatic agent, for
example, to monitor the expiration date of a particular set of

10

15

20

25

30

35

40

45

50

55

60

65

10

nodes, and then automatically delete any child object links
that have expired. In this example, and in FIG. 7, CURL is
a URL of the child node to be unlinked; CIMT is the child
node’s current IMT; and PURL is the URL of the parent
node from which the child node is to be unlinked.

In step 7000, CURL is added to the Updated list 2050,
and, in step 7010, PURL is added to the To Do list 2040. In
step 7020, CURL is deleted as a child of PURL in the
compound document database 2080, and, in step 7030,
PURL is deleted as a parent of CURL in the compound
document database 2080. In step 7040, the URLs of all of
CURL’s parents are retrieved from the compound document
database 2080, and all those other than CURL are added to
the To Do list 2040. In step 7050, the next, where “next” is
determined by first-in, first-out (FIFO) ordering, is assigned
to PURL and deleted from the To Do list 2040. In step 7060,
the META-tag deletion handler is invoked, being passed
PURL and CIMT. A detailed example of the META-tag
deletion handler is described below with reference to FIG.
8b. Then, in step 7070, PURL is added to the Updated list
2050. In step 7080, all of PURL’s parents are retrieved from
the compound document database 2080, and all those URLs
which are not members of the Updated list 2050 are added
to the To Do list 2040. In step 7090, if the To Do list 2040
has no further entries, the delete request handler 5050 exits.
Otherwise, the workflow then continues, starting at step
7050.

FIG. 8 depicts an example of the add request handler 5030
which allows compound document administrators, both
human and automatic, to add the specification of one node
as the child of another node, and have this link addition
reflected in all parent collections (both immediate and
recursive). In this example, and in FIG. 8, CURL is the URL
of the child node to be linked; CIMT is the child node’s
current IMT; and PURL is the URL of the parent node to
which the child node is to be linked.

In step 8000, CURL is added to the Updated list 2050,
and, in step 8010, PURL is added to the To Do list 2040. In
step 8020, PURL is added as a parent of PURL in the
compound document database 2080, and, in step 8030,
PURL is added as child node of CURL in the compound
document database 2080. In step 8040, the URLs of all of
CURL'’s parents are retrieved from the compound document
database 2080, and all those other than CURL are added to
the To Do list 2040. In step 8050, the next, where “next” is
determined by FIFO ordering, is assigned to PURL and
deleted from the To Do list 2040. In step 8060, the META-
tag addition handler is invoked, being passed PURL and
CIMT. A detailed examples of the META-tag addition
handler is described below with reference to FIG. 8b. Then,
in step 8070, PURL is added to the Updated list 2050. In step
8080, the URL’s of all of PURL’s parents are retrieved from
the compound document database 2080, and all those which
are not members of the Updated list 2050 are added to the
To Do list 2040. In step 8090, if the To Do list 2040 has no
further entries, the add request handler 5030 exits.
Otherwise, the workflow then continues, starting at step
8050.

FIG. 8a depicts an example of the META-tag addition
handler 2090 having features of an exemplary embodiment
of the present invention. In the preferred implementation,
when called, the META-tag addition handler 2090 is passed
a URL and a PICS label. Given these two parameters, the
META-tag addition handler 2090 incorporates the given
PICS label into specified URL’s AMT using the appropriate
aggregation function. Examples of the type of possible
aggregation functions include: 1) Maximization, 2)
Minimization, and Averaging.

6,094,657

11

Those skilled in the art will appreciate that in cases where
the nodes’ PICS labels (both IMT and AMT) have several
PICS label categories, different aggregation functions may
be used for each PICS label category. For example, if the
PICS labels being used have PICS label categories for both
obscenity and freshness, the META-tag-addition handler
2090 could aggregate the obscenity values using maximi-
zation (i.e., track the highest or worst value), while aggre-
gating the freshness values using minimization (i.e., keep
track of the least recent value). The exemplary embodiment
depicted by FIG. 8a assumes that the PICS labels have only
a single PICS label category. In cases where the PICS labels
being used have more than one PICS label category, this
addition handler 2090 can be invoked multiple times, once
for each PICS label category.

Referring to FIG. 84, in step 8100, the META-tag addition
handler 2090 waits for requests. In step 8110, if the appro-
priate aggregation function is maximization, then the maxi-
mization addition routine is invoked in step 8120.
Otherwise, in step 8130, if the appropriate aggregation
method is minimization, then the minimization addition
routine is invoked in step 8140. Otherwise, in step 8150, if
the appropriate aggregation method is averaging, then the
averaging addition routine is invoked in step 8160.
Otherwise, for other aggregation functions that are not the
focus of the present invention, a further miscellaneous
aggregation routine may be invoked in step 8170. The
Maximization, Minimization, and Averaging functions are
now described.

For Maximization, given a new PICS label, the new AMT
for the node corresponding to the specified URL can be
determined by comparing the PICS label category value of
the specified PICS label with that of the node’s AMT, and
then setting the node’s new AMT value to the greater of the
two.

For Minimization, given a new PICS label, the new AMT
for the node corresponding to the specified URL can be
determined by comparing the PICS label category values of
the specified PICS label with that of the node’s AMT, and
then setting the node’s new AMT value to the lesser of the
two.

For Averaging, to determine the average aggregated
value, weighted averages can be used. With this method, for
a given PICS label category, a list of the values and the
number of each value must be maintained in the compound
document database 2080 for each participating node. Thus,
for example, a given node’s AMT for PICS label category
“age” would also contain a field:

Contributing META-tags=(. . .

1x9) . ..)
indicating that the node’s AMT for PICS label category
“age” was the result of averaging one value of 7, two values
of 8 and one value of 9, for example,:

(7+8+8+9)/14=32/4=8.

If a META-tag whose PICS label category for “age” with
a value of 18 were added to this node, the resulting com-
pound document database 2080 field for this node would
become:

Contributing META-tags=(. . .

1x18) .. .)
resulting in the node’s AMT PICS category value for “age”
equaling 10, ie.,

(7+8+8+9+18)/5=50/5=10.

FIG. 8b depicts an example of the META-tag deletion
handler 2100 having features of the exemplary embodiment
of the present invention. In the preferred implementation,
when called, the META-tag deletion handler 2100 is passed

(“age” 1x7, 2x8,

(“age” 1x7, 2x8, 1x9,

10

15

25

30

35

40

45

50

55

60

65

12
a URL and a PICS label. Given these two parameters, the
META-tag deletion handler 2100 deletes the given PICS
label from the specified URL’s AMT using the appropriate
aggregation function. As with the META-tag addition han-
dler 2090, possible exemplary aggregation functions include
Averaging, Maximization, and Minimization.

The maximization and minimization aggregation func-
tions will be described below with reference to FIGS. 11 and
12 respectively.

As understood by those skilled in the art, in a situation
where the nodes’ PICS labels (both IMT and AMT) have
several PICS label categories, different aggregation func-
tions may be used for each PICS label category. For
example, if the PICS labels being used have PICS label
categories for both obscenity and freshness, the META-tag-
deletion handler 2100 could aggregate the obscenity values
using maximization (i.e., maintain the highest or worst
value), while aggregating the freshness values using mini-
mization (i.e., maintain the least recent value). The example
depicted by FIG. 8b assumes that the PICS labels being used
have only a single PICS label category. In cases where the
PICS labels being used have more than one PICS label
category, this META-tag deletion handler 2100 can be
invoked multiple times, once for each PICS label category.

Referring to FIG. 8b, in Step 8200, the META-tag dele-
tion handler 2100 waits for requests. In step 8210, if the
appropriate aggregation function is maximization, then the
maximization deletion routine is invoked in step 8220.
Otherwise, in step 8230, if the appropriate aggregation
method is minimization, then the minimization deletion
routine is invoked in step 8240. Otherwise, in step 8250, if
the appropriate aggregation method is averaging, then the
averaging deletion routine is invoked in step 8260.
Otherwise, for other aggregation functions that are not the
focus of the present invention, a further miscellaneous
aggregation routine may be invoked in step 8270.

For the Averaging method, to determine the average
aggregated value, weighted averages can be used. With this
method, for a given PICS label category, a list of the values
and the number of each value must be maintained in the
compound document database 2080 for each participating
node. Thus, for example, a given node’s AMT for PICS label
category “age” would also contain a field:

Contributing META-tags= . . . (“age” 1x7, 2x8, 1x9,

1x18)) .. .)
indicating that the node’s AMT for PICS label category
“age” (equal to 10) was the result of averaging one value of
7, two values of 8 one value of 9, and one value of 18, for
example,

(7+8+8+9+18)/5=50/5=10.

If a META-tag whose PICS label category for age with a
value of 18 were deleted from this node, the resulting
compound document database 2080 field for this node
would become:

Contributing META-tags= . . . (Age 1x7, 2x8, 1x9) .. .)
resulting in the node’s AMT PICS category value for “age”
equaling 8, i.e.:

(7+48+8+9)/4=32/4=8.

FIG. 11 depicts an example of how the AMT of the node
specified by the passed URL can be updated given the
deletion of a specified PICS label given that the AMT was
computed using maximization. In this example, and in FIG.
11, CURL is the URL of a specified node; PURL is a variable
used to hold a URL; NV is a PICS label category value of
the specified META-tag; CV is a PICS label category value
for a specified node’s AMT; MV is a variable used to hold
new maximum value; aux1 is a list used to hold URLs of

