
An Architecture for Dynamic Reconfiguration
in a Distributed Object-Based Programming Language

Brent Hailpern Gail E. Kaiser
IBM Columbia University

Thomas J. Watson Research Center Department of Computer Science
P.O. Box 704 500 West 120th Street

Yorktown Heights, NY 10598 New York, NY 10027
914-784-6821/fax: 914-784-6201 212-939-7081/fax: 212-666-0140

bth@watson.ibm.com kaiser@cs.columbia.edu

23 February 1993

Abstract

A distributed application ideally allows reconfiguration while the application is running, but changes are
usually limited to adding new client and server processes and changing the bindings among processes. In
application domains involving rapidly changing data, it is often necessary to support finer grained
reconfiguration at the level of entities smaller than processes, even without operating system support for
dynamic linking. We present a scheme for special cases of fine-grained dynamic reconfiguration
sufficient for a range of application domains and show how it can be used for practical changes. We
introduce new language concepts to apply this scheme in the context of an object-based programming
language that supports shared data in a distributed environment.

Copyright  1993 Brent Hailpern and Gail E. Kaiser

Part of this work was completed while Prof. Kaiser was an Academic Visitor at the IBM Thomas
J. Watson Research Center. Kaiser was supported by National Science Foundation grants CCR-9106368,
CCR-9000930 and CCR-8858029, by grants from AT&T, BNR, DEC and SRA, by the New York State
Center for Advanced Technology in Computers and Information Systems and by the NSF Engineering
Research Center for Telecommunications Research.

An extended abstract of this paper titled "Dynamic Reconfiguration in an Object-Based Programming
Language with Distributed Shared Data" appeared in the Eleventh International Conference on
Distributed Computing Systems, Arlington TX, May 1991, pp. 73-80.

keywords: abstract type, distributed system, late binding, network management, portfolio management,
soft real-time

1

1. Introduction
This research is motivated by the problem of rapidly changing data in a distributed environment, as arises

in many real-world application domains. For example, on-line stock trading involves: (1) enormous

amounts of data (stocks and options); (2) sharing of data among large numbers of simultaneous users

(financial analysts); (3) rapidly changing data (as prices of financial instruments fluctuate); (4) changes to

data outside the control of the system (from the stock exchange wire); and (5) economic penalties for

making decisions based on obsolete data (say, data from before the most recent large transaction in a

particular stock). These problems have been articulated by other researchers (e.g., [28]).

An on-line stock trading program might consist of a shared ‘‘prices database’’ and a number of analyst

workstations that execute portfolio management programs. These portfolio managers would monitor the

current prices of the stocks and options, and execute the appropriate purchases and sales — as market

conditions change — according to certain rules and constraints associated with the particular portfolio by

a financial analyst. A key challenge in such a program is that the prices of the various stocks and options

change rapidly, perhaps several times a minute. Multiple portfolios will refer to the same instruments, but

have separate criteria for when price changes are significant to their investment strategies. Thus, different

portfolios may require information about price changes at different time intervals and/or different

granularities of change. What we have in mind is essentially ‘‘soft’’ real-time processing, where it is not

mandatory for every portfolio to be informed of every possibly trivial price change, but where the quality

of service is balanced against the computation and communication costs of providing that service.

In previous papers [15, 16], we introduced a distributed object-based programming model that addresses

these problems. This programming model supports an application architecture where price changes are

monitored by daemons operating on behalf of individual portfolio managers. The sampling rate of each

daemon is specific to the requirements of its portfolio manager, and each daemon notifies its manager of

changes at the granularity considered ‘‘interesting’’ by the manager’s financial strategy. This approach

falls in the middle of the spectrum from polling to active values (or notification), and combines the

advantages of both extremes. Our programming model also supports other architectures on this spectrum,

and is not specific to financial services. It is suitable for other applications, such as network

management [24], machine vision [3] and animation [10], with similar characteristics.

We have developed a language, called PROFIT (PROgrammed FInancial Trading), based on this model.

PROFIT is a coordination language [6] (in the sense of Linda [4]) that extends the declarations and

statements of some base computation language, such as C, with additional facilities to support distributed

computation in the context of rapidly changing shared data. In particular, PROFIT adds facets as the

minimal unit of data and control, objects as collections of facets encapsulated for the purpose of

information hiding, and processes as collections of facets organizing the run-time structure of the

program. Different facets of the same object may reside in different processes, and a facet may be shared

among multiple objects although it resides in exactly one process.

2

An archetypical program includes one facet representing each financial instrument available. This

collection of facets executes in one or more processes as the ‘‘prices database’’. Each of the several

portfolios would be represented by an object that includes some subset of the shared price facets, plus

additional private facets for monitoring changes to prices and computing financial strategies. Since an

object may be distributed among several processes, a portfolio object may include price facets located in

processes that reside on a distinguished database machine and portfolio management facets in a process

on an analyst’s workstation. Daemon facets that monitor changes in the market might be located on either

machine, reflecting different computation and communication cost tradeoffs.

In our previous papers, we described a subset of PROFIT that supported only early binding of facets into

objects. In particular, each object was defined as consisting of a static set of facets. This simplification

allowed us to focus on issues of sharing, delegation and interfaces by avoiding the complications of

dynamic system issues. Unfortunately, early binding inhibits flexibility in critical ways. For example, in

the extreme, it does not allow adding instruments, adding portfolios, or changing the composition of

portfolios over time. To change anything, it would be necessary to recompile the program and reinitialize,

certainly disruptive for an on-line application.

In this paper, we relax the early binding paradigm and describe how PROFIT supports special cases of late

binding. We refer to these cases collectively as dynamic reconfiguration. Dynamic reconfiguration gains

the flexibility to implement the specific rebindings required for rapidly changing data applications

without abandoning the benefits of early binding.

Three main concepts enable dynamic reconfiguration in PROFIT: breeds, stalls and pens (the ranching

metaphor is explained later). Breeds are abstract types [2]: they define the sets of facilities required of

those facets that can be substituted for each other in particular contexts. Stalls and pens are similar to

variables and sets, respectively: stalls ‘‘hold’’ a single facet and pens ‘‘hold’’ a collection of facets; in

both cases the facet or facets being held can be changed during program execution. These concepts give

the PROFIT programmer the ability to change the group of facets operated on by a computation and

substitute among a number of facets that all provide a common set of facilities. It is possible to change

the static organization of an executing program, but without going so far as to require generic dynamic

linking from the operating system or interpretation from the programming language implementation.

Throughout the rest of this paper, we refer to the subset of PROFIT described in our previous papers as

PROFIT .0

One way to aid the application programmer in applying these concepts would be to implement a library of

subroutine calls in some conventional programming language, such as C or C++. Another possibility

would be to integrate the concepts into a uniform level of abstraction as part of a new programming

language. We chose a hybrid approach: we maintain traditional data structures and control flow from a

conventional computation language, but add pervasive new constructs representing our programming

3

model as a coordination language. Relying on an existing computation language allows us to focus on the

innovative aspects of our model. An additional advantage of this language design technique is that a

prototype implementation can be written as a preprocessor plus run-time libraries rather than a full-scale

compiler.

We start with an overview of the PROFIT language, including the concepts that support dynamic

reconfiguration, and then discuss related work. In the subsequent sections, we present in detail the

PROFIT programming constructs that support dynamic reconfiguration, followed by run-time issues.

Throughout the paper to that point, we use the stock trading application as a running example, but then

briefly consider a network management example. We describe the existing implementation of PROFIT,

which includes a simpler facility for more restricted dynamic reconfiguration. Though we describe

several fault tolerance issues as they arise, we do not address mechanisms to handle process failures and

network partitions in this paper.

2. Overview
The PROFIT programming model supports sharing data among objects in a distributed environment.

There are three central components:

• Facet, the minimal unit of data and control. Although facets may be shared among multiple
objects, only one operation at a time may execute within a facet.

• Object, a collection of facets representing an information hiding unit. An object defines a
context for binding references between facets in the same object and an external interface for
encapsulating the facets.

• Process, a statically defined collection of facets that must execute on the same host. That is,
a process represents a single virtual address space in which its facets reside, and allocation of
computation and communication resources to facets is handled by their process. Multiple
facets may execute concurrently within the same process.

Every facet is contained in one or more objects and exactly one process. Objects and processes are

orthogonal: processes can contain parts of many objects and objects can be distributed over many

processes. An object might consist of only one facet, or all the facets in the system might be part of the

same object. Analogously, a process might contain a single facet, or all facets might execute within the

same process. Our intent is to allow these extremes, as well as a variety of intermediate points on the

spectra. One possible organization is illustrated in Figure 2-1.

We briefly sketch these PROFIT language concepts below. A more complete treatment, with detailed

financial examples, may be found in [16].

4

f

f

f

f

f

f

f

1

2

3

4

5

6

7
process P

process Q

process R

object A

object B

Figure 2-1: Facets, Objects and Processes

2.1. Facets

A facet has a unique name and a set of named slots, each of which may contain either a data value or

procedure code. Slots are typed, with either the type of the data (e.g., a C datatype, if C is the

computation language) or the return value of the procedure (e.g., a C datatype or void). Procedure slots

must be equated to specific procedures (e.g., C functions) at compile-time. Within one of these

procedures, the program text can refer to slots in the same facet (both data and procedure) via extended

syntax (e.g., PROFIT additions to C). Data slots may optionally be initialized to a specific value

determinable at either compile-time or run-time; if not explicitly initialized, data slots are implicitly set to

null values. Evaluating a data slot returns its current value, while evaluating a procedure slot executes the

procedure with the parameters provided and returns the result of the execution, if any. Data slots may be

reassigned during execution to new values, but procedure slots cannot be changed. This structure is

similar to objects in Self [34].

For example, in PROFIT we can declare a facet containing only data slots as follows:
FACET Some-instrument

stock-price: price;
1Q-option-price: struct { strike-price: price,

option-price: price };
2Q-option-price: struct { strike-price: price,

option-price: price };
END FACET Some-instrument

There is a distinguished slot within each facet, called active, that represents the currently executing

operation (either evaluation of a procedure slot, or get or put on a data slot). By definition, there can

be at most one operation executing within a facet at any time. Since every facet has an active slot, it is

not explicitly declared.

Within a facet, every use of an identifier matches an identifier defined within the same facet. There are

no free variables. In order to support references from one facet to another, one or more slots of a facet

may be declared indirect, as depicted in Figure 2-2. The containing object is then obliged to provide a

5

high-trigger
low-trigger
monitor-code

$23
$13

strategy-wake
stock-price
1Q-option-price

2Q-option-price

Some-instrument

stock-price
1Q-option-price
2Q-option-price

$14.38
($15,$.38)
($15,$.88)

active active

Bull-Strategy
active
buy
sell
query
wake-up
strategy-code
broker

External
interface

buy-it

sell-it

status

(Joe-Broker,customer)

Portfolio
Manager

Change-monitor

Binding
Table

= C-function
= INDIRECT

Figure 2-2: Generic Object

binding to a slot in some other facet. Every object has a binding table for this purpose. When a

procedure slot is being executed, and the code references an indirect slot (data or procedure) of its facet,

then the semantics are to refer to the current object’s binding table to resolve the reference.

For example, we would declare the Change-monitor facet in Figure 2-2 as:
FACET Change-monitor

high-trigger: price;
low-trigger: price;
monitor-code(parameter declarations): return type;
indirect strategy-wake(parameter declarations): return type;
indirect stock-price: price;
indirect 1Q-option-price: struct { strike-price: price,

option-price: price };
indirect 2Q-option-price: struct { strike-price: price,

option-price: price };
END FACET Change-monitor

6

2.2. Objects

An object defines an external interface and encapsulates the data and procedures in its internal facets.

The interface defines the set of entries visible to other objects, representing procedures or get and put

operations on data. An object binds each entry in its interface to a slot in one of its facets. Since facets

may contain indirect slots, an object must bind every indirect slot in one of its facets, either to a slot in

another one of its facets or to an entry in the interface of another object. In both cases, the result of the

mapping is to a pair: either (facet, slot) or (object, entry).

The example portfolio management object in Figure 2-2 shows how several facets may be bound together.

This binding would be declared as follows:
OBJECT Portfolio Manager
FACETS: Change-monitor, Some-instrument, Bull-Strategy;

ENTRY: buy-it->Bull-Strategy.buy;
sell-it->Bull-Strategy.sell;
status->Bull-Strategy.query;

MAP: Change-monitor.strategy-wake->Bull-Strategy.wake-up;
Change-monitor.stock-price->Some-instrument.stock-price;
Change-monitor.1Q-option-price->Some-instrument.1Q-option-price;
Change-monitor.2Q-option-price->Some-instrument.2Q-option-price;
Bull-Strategy.broker->Joe-Broker.customer;

END OBJECT Portfolio Manager

When code (e.g., a C function) is executing within a facet, it may access only those slots defined in the

same facet. Accesses to indirect slots are resolved through the binding table at run-time. Evaluating a

slot results in a call to a C function, for a procedure slot, or to the get or put operation, for a data slot.

A call within a facet is treated like a conventional procedure call. For calls between facets, we consider

first the viewpoint of the called facet, and then discuss the calling facet.

There is a queue associated with each facet, and an arriving call is inserted in the facet’s queue. When a

facet is inactive, it accepts a call from its queue. When the called operation completes, the facet places
1the response in the queue for the calling facet, and it then goes on to accept its next queued call, if any.

From the viewpoint of the calling facet, it queues the appropriate operation at the called facet and

becomes inactive. The calling facet is not suspended waiting for the response, but may now accept the

next call in its queue. After the response to the original call is placed in the caller’s queue and eventually

accepted, the facet continues with the operation that made the call from the point where it left off. These

discussions of both caller and callee viewpoints are equally valid for indirection to another facet in the

same object or to an entry in the interface of another object (and ultimately a facet in this other object).

So far, we have considered only the case where a facet is part of exactly one object, and thus there is

1This description has been simplified for ease of presentation; PROFIT also supports asynchronous message passing and
priorities.

7

My-portfolio
my-strategy

shares

price

...

100

Bill’s-company
stock-price
1Q-option-price

2Q-option-price

$114.75
($115,$.50)

($115,$4.75)Best-stock

exchange
industry

NYSE

Widgits

share-price

Your-Portfolio
your-strategy

price-90

price-now

...
$75 Sue’s-company

stock-price
1Q-option-price

2Q-option-price

$100
($90,$10)

($90,$12)

Best-stock

exchange
industry

NYSE

Widgits

share-price

Best-stock

exchange
industry

NYSE

Widgits

share-price

Binding
Table

Binding
Table

Figure 2-3: Shared Facet

exactly one binding table that needs to be considered. When a facet is shared among multiple objects,

each of these objects provides a different binding table that must independently resolve all the shared

facet’s indirect slots, as illustrated in Figure 2-3. When a facet is active, only one binding is actually

used, the one provided by the binding table for the calling object.

Communication between objects is a simple extension of the communication between facets. When a call

is received at the interface of an object, the object maps the call to a slot of one of its member facets. The

call is queued normally at the facet. When the call returns, the object must send the result back to the

calling object.

2.3. Processes

PROFIT processes are based on the conventional notion of processes in operating systems. Each facet

resides in the address space of a particular process, and processes thus represent the execution-time

organization of facets. In contrast, objects represent the compile-time organization of facets. Objects do

not ‘‘live’’ anywhere, and facets of the same object may be distributed among multiple processes on the

same or different machines. The only physical representation of objects are their binding and entry tables,

8

which are replicated in every process containing one or more of their facets.

PROFIT relies on medium-weight threads similar to Sun’s lwp package [33], permitting multiple threads to

execute within the same process, i.e., the same address space. Along with a simple locus of control, a

thread maintains context (that is, a stack) between nested calls, thereby permitting recursion. Each call in

a facet queue is represented by a thread, which provides the context of the call.

When a procedure in one facet makes a call to another facet, the first facet’s current thread is suspended

and enqueued at the called facet. When a facet removes a thread from its queue, the facet sets its

active slot to reference the thread and resumes the thread’s execution to evaluate the called slot; when

the call completes, the thread is suspended and enqueued at the caller. This works only among facets

within the same process, where enqueuing and dequeuing of threads is managed by simple index or

pointer manipulation. When calls are made across process boundaries, a stand-in thread must be

designated in the remote process. Notice that the execution of a procedure slot is not necessarily atomic.

If the procedure accesses an indirect slot, then it relinquishes its control over the facet and the next call in

the queue takes over. Any state that must be maintained across an indirect access must be saved in the

procedure’s local variables (and thus the thread’s stack), not in the data slots of the facet.

A process is declared as follows:
PROCESS Prices-database
FACETS: Some-instrument, Another-instrument, A-third-instrument,

Your-instrument, My-instrument, Database-manager;

start := Database-manager.initialize();
<error handling>

END PROCESS Prices-database

2.4. Dynamic Reconfiguration

In our earlier papers, we described the PROFIT subset assuming a fixed, static set of facets, objects and0

processes determined at compile-time. All entities were statically allocated, and no new facets, objects or

processes could be added to the program. All connections among entities were also statically determined;

specifically, a portfolio manager could not substitute one instrument for another or change the number of

instruments in the portfolio. Limiting discussion to this subset permitted us to concentrate on the

programming model without concern for run-time interface checking, locating and accessing facets, and

so on.

The new result presented in this paper, called dynamic reconfiguration, reflects the relaxation of these

restrictions to allow limited changes to the static structure in order to support important special cases

motivated by the application domains we have studied. Our approach is to support only a small number

of well-defined changes to an executing program, providing high leverage with low overhead.

The PROFIT coordination language supports the following special cases: the ability to substitute one facet

9

for another with a compatible interface in a controlled manner, operations over (dynamically-sized) sets

of facets where the composition can be changed, and addition of new facets, objects and processes to an

executing program. For example, this allows us to add new instruments to the prices database, change the

composition of existing portfolios, and add new users and their portfolios.

Substituting one facet for another could be handled by making the binding table a first-class entity that

can be explicitly modified during execution. Similarly, sets of facets could be handled using the data

structuring features of the underlying computation language. These design decisions would imply the

manipulation of low-level implementation details, equivalent to accessing stack pointers and contents of

registers.

Throughout our work on PROFIT, we have deliberately avoided the direct manipulation of pointers to

facets, or other kinds of facet identifiers. Such identifiers are ugly in principle because without hardware

or operating system support (e.g., capabilities), programs can manipulate them in arbitrary ways, forge

them, and access the associated facets in violation of integrity constraints. For example, one could extract

the tenth through thirteenth words offset from the beginning of a facet.

In the PROFIT subset, explicit pointers or identifiers were not an issue, because all facets were bound0

statically and all references implicitly went through the statically defined binding table. This approach

has a significant advantage in providing a uniform programming style for slot manipulation, whether the

slot is defined directly in the facet or requires indirection to another facet or to an object interface entry.

In particular, there is no need for indirect accesses to explicitly dereference a pointer or lookup a facet

identifier.

The facilities we present for facet substitution and sets of facets maintain this programming model. We

introduce the notion of a binding table whose mappings may change, but only implicitly as a side-effect of

other operations to be presented in this paper. It is impossible to access the binding table explicitly.

At first glance, it would seem that adding new facets to an executing program could be solved by dynamic

storage allocation (although it should be noted that not all computation languages support dynamic

allocation, e.g., Cobol and Fortran). However, recall that every facet has its own data and procedure

definitions, hence it is not just another instance of a pre-defined class. Thus adding a facet can require

that totally new code be added to an executing program. Adding new code to a running process is

feasible for many interpretive languages, and is possible even for compiled languages when the operating

system supports dynamic linking. But we intend PROFIT to act as a coordination language for

computation languages and operating systems without these facilities.

On the other hand, the addition of new processes to an executing program is no more difficult than the

process-level dynamic reconfiguration described in our next section on related work. We exploit this fact

to enable the addition of facets, by placing all new facets in new processes. These new facets can be

10

incorporated into existing objects, and new objects can acquire existing facets, through the substitution

and set mechanisms described below.

Dynamic reconfiguration can be viewed as a form of delegation [22]: when one object receives a message

it cannot handle, it passes on or delegates the message to another object. There is nothing inherently

static in the delegation concept. PROFIT indirect bindings effectively implement delegation, and hence

changing the bindings among facets makes the delegation dynamic.

PROFIT’s dynamic reconfiguration capabilities are built on three main concepts:

• Breed, a partial interface description or abstract type. A breed represents a service that is
provided by every facet or object that conforms to the description. The description is partial
in the sense that a facet or object may provide additional services, and hence belong to more
than one breed.

• Stall, a collection of facet slots that can be mapped to the corresponding slots in any one facet
or object (called the stall’s occupant) belonging to an associated breed, and later remapped
under program control to a different facet or object. A stall provides a way of expressing the
requirement that a number of slots in a single facet map to corresponding slots in exactly one
other facet or object, as opposed to separately binding each of the slots to perhaps a different
facet or object.

• Pen, a repository for a set of facets or objects (collectively called a herd) that all belong to an
associated breed. A member of a herd is called a constituent. A pen allows grouping together
of a variable number of facets or objects selected from a breed, where the contents of the pen
can change over time. Operations on a pen include iteration and associative queries.

Breeds and stalls provide a simple facility for changing an executing program: replacing a ‘‘client’’

facet’s binding from one ‘‘server’’ facet to another ‘‘server’’ facet within the containing object’s binding

table. Pens and herds add the ability to operate over changing collections of facets. We chose this

terminology because more conventional terms like type, class, abstract type, abstract class, collection, set,

interface, variable, group, view, etc. already have multiple meanings in the literature, and we wished to

avoid misleading readers who may be familiar with the terms in other contexts. To our knowledge,

Computer Science has yet to exploit the ranching metaphor.

All that is needed for a facet to belong to a breed is to provide the designated set of slots. Since an object

interface can also provide a set of slots, objects can also be members of a breed. Thus an object can

occupy a stall and can be a constituent of a herd. Everything we have said regarding breeds and herds for

facets applies similarly to objects. Facets and objects can occupy the same stall (at different times) and be

mixed in the same pen. In the rest of the paper, we will often say facet when referring to a member of a

breed but, in general, the same statements apply equally well to objects.

PROFIT’s run-time system provides a registry for each breed. A registry is a pen that automatically

contains all the facets and objects that are members of the corresponding breed, and thus supports

associative queries across all the members of a breed. New processes are added to an executing

application in the style of ranchhouses, where a new ‘‘room’’ can be added on to the end of an existing

11

‘‘building’’.

3. Related Work
There is extensive related work on object models, which we describe in our previous papers. Since this

paper concentrates on abstract interfaces and dynamic reconfiguration, this section addresses work related

only to these topics.

3.1. Abstract Interfaces

Emerald [2] uses the notion of abstract types to provide the benefits of static type checking while

retaining the flexibility and extensibility of untyped object-oriented languages. An abstract type defines

an object interface: a set of operations, their signatures and, at least in principle, their semantics. Any

actual object can implement many abstract types, and any abstract type can be implemented by many

different actual objects. Emerald defines a static type-checking discipline based on conformity of abstract

types. Though Emerald permits subtyping, based on type conformity, it does not support code-sharing

inheritance. Abstract types in Emerald are equivalent to PROFIT breeds; we chose the term ‘‘breed’’ over

‘‘abstract type’’ because the PROFIT model diverges from that of Emerald in most other respects.

Furthermore, we wished to avoid confusion with the similar term ‘‘abstract class’’ (a class that can be

subtyped but not instantiated).

Objects are dynamically created in Emerald by an object-constructor object, rather than instantiated from

a class or cloned from a prototype. In support of distributed applications, objects are manipulated through

location-independent object invocation. It is the responsibility of the run-time system to locate and

transfer control to the target object. Emerald uses a small number of explicit location primitives:

locate (an object), fix (an object at a node), unfix (an object) and move (an object). Emerald

supports a parameter passing mode termed call-by-move (such a parameter is passed by reference, but at

the time of the call it is relocated to the destination site). In contrast, PROFIT does not support object

migration; PROFIT parameters are passed by value and facets cannot themselves be parameters. Location

information is never exposed in the programming of a facet.

Beta [21] also provides a concept similar to breeds. It defines ‘‘patterns’’ that are analogous to classes:

Beta objects are instances of patterns. Patterns are explicitly organized in a classification hierarchy, by

declaring one pattern to be a subpattern of another. Virtual patterns are a generalization of virtual

functions, making it possible to delay the specification of an attribute, thus allowing attributes to have

different bindings in sibling subpatterns. Virtual patterns serve a purpose similar to that of breeds, in that

they provide a partial description of patterns. However, breeds support substitution of any PROFIT facet

or object that meets its abstract interface, while Beta requires objects to be explicitly declared as instances

of a pattern.

3RPDE [12] is a structural framework for integrating tools that manipulate objects. A tool, in general, can

12

perform many functions, and can manipulate objects of a variety of types. To allow for easy extension,

both of the functions that can be performed and of the object types that can be manipulated, each tool is

separated into code fragments along two dimensions: function and data. A fragment, called a tool base, is

associated with each function and contains generic code to perform that function. The code is entirely

independent of object type. When type-dependent processing is required, the tool base calls an

appropriate ‘‘support’’ method. Separate code fragments associated with specific object types implement

these methods.

This two-dimensional architecture allows extension in both the functional and data domains to be

accomplished by addition of code fragments, rather than by modification of existing code. Each tool base
3in an RPDE environment thus expects the objects it manipulates to implement a particular collection of

‘‘support’’ methods, and any object that does so can be manipulated successfully. Such collections of

methods are called roles, which are analogous to PROFIT breeds. Each object can have multiple roles,

allowing for manipulation by multiple tool bases. Both object types and roles form hierarchies: the object

type hierarchy supports inheritance of implementations, whereas the role hierarchy supports inheritance
3of specifications. The two-dimensional organization of RPDE allows it to support both subtyping and

3code-sharing inheritance. RPDE is not intended to support concurrent programming, although the

underlying object store can be shared.

3Hailpern and Ossher [11] have extended RPDE ’s roles to views that include interface specifications,

servers and clients. They present a framework for describing different inheritance and delegation

mechanisms, and for orthogonally incorporating security, priority, and controlled interfaces in an object-

oriented system. Their views also permit the dynamic changing of the set of clients and operations over

these changing client sets.

Helm, Holland and Gangopadhyay [13] present ‘‘contracts’’ that define a set of communicating

participants and their contractual obligations with respect to the larger grained abstraction represented by

the contract. The participants correspond to facets and the instances of contracts to PROFIT objects. In

contrast to PROFIT objects, which specify only bindings among indirect slots in facets, contracts give the

patterns of communication or protocols among participants. Contractual obligations consist of type

obligations, which are equivalent to breeds, and causal obligations, which capture the behavioral

dependencies between objects. These dependencies are expressed as ordered sequences of sending

messages and setting instance variables, an approach useful for implementing simple composition

paradigms such as Model-View-Controller [19]. However, the prescription of externally specified

protocols (i.e., not embedded in the code) for accessing indirect slots in PROFIT programs would

unnecessarily constrain the programmer as well as introduce substantial run-time overhead to validate

procedure calls and setting of data slots.

13

3.2. Dynamic Reconfiguration

Dynamic reconfiguration is common in operating systems and network management systems. In both

cases the resources to be managed change relatively infrequently. In the past, reconfigurations such as

adding a printer or a new network node were handled manually. As networked systems get larger and

faster, however, it has become necessary to automate these processes. New management and control

approaches are being developed to automatically change configurations as well as to detect and correct

performance bottlenecks and failures [25, 20].

The SOS operating system [31] is similar to PROFIT in that multiple objects (similar to our facets) can be

combined into a group (similar to our notion of object), with easy communication among the objects in

the group, even though the objects reside in multiple contexts (similar to our processes). A local proxy

provides access to the service collectively provided by the group. Proxies may be migrated as needed for

service. PROFIT’s stalls provide the equivalent of proxies, but without any physical migration except in

the sense of installing a local copy of the relevant binding table. SOS effectively supports a coordination

language, in the sense of PROFIT, with objects implemented in C++. SOS provides a mechanism for

certain cases of dynamic reconfiguration in the form of dynamic classes, where all member functions are

called via a dynamic table, but requires dynamic linking capabilities not needed by PROFIT.

The Mercury system [23] provides a general interprocess communication mechanism for heterogeneous

systems. Servers are written independently of whether their application clients choose communication

protocols to provide low latency or high throughput. The performance requirements of the application

determines the choice of conventional synchronous RPC, asynchronous sends, or bulk byte streams, all

supported by the same call-streams mechanism. Multiple languages are supported through subroutine

libraries or language extensions, collectively known as language veneers. Dynamic reconfiguration is

supported to a minimal extent through server ports, which are reestablished after network failures and

permit binding of new clients to servers during program execution. Thus the facility comparable to

stalls/occupants is implicit, and there is nothing comparable to our pens, herds or registries.

The Matchmaker system [14] is similar to Mercury. It provides an interface specification language for

heterogeneous distributed systems. Hermes [32] is another system that supports distributed programs

with well-defined interfaces between processes. New ports can be added to an executing process and

existing port connections can be changed, by statements executed from within the existing Hermes code.

This is analogous to PROFIT’s facilities for filling stalls and pens. New processes can also be added using

the create of statement, but only from within an existing process. Thus it is not possible to add new

facilities that were not anticipated in the original program.

Conic [17] is also port-based. Task modules, analogous to facets, contain code, data, entry ports and exit

ports. These task modules are configuration independent: there is no direct naming of other modules, just

sends and receives to ports. Group modules collect together task modules (and other group modules) in a

14

way similar to PROFIT objects. These group modules provide configuration through special operations:

e.g., create, link, and unlink. The external interfaces of task modules are the same as that of group

modules, so either can be nested in higher-level group modules. Conic logical nodes correspond to our

processes. Each is, in effect, a runtime instantiation of a group module. At runtime, the Configuration

Manager can accept configuration commands so as to change the existing links between logical nodes and

to create new logical nodes.

Conic differs from PROFIT in several important ways. Conic supports linking between typed ports, but

provides no syntactic framework (such as stalls) for specifying that sets of ports must map to the same

target module. Conic does not provide sharing of data between task modules, except for the optimization

that messages between tasks within one logical node can be pointer-based. Group modules cannot span

multiple logical nodes (unlike PROFIT objects, which can span multiple processes). As a result, dynamic

reconfiguration in Conic cannot affect the internals of a group module: it is compiled into only one logical

node. PROFIT can, however, extend objects with new facets by including the facets in a new process.

Wei and Endler [35] describe a similar port-based facility with three kinds of modules: definition modules

(data type and procedure declarations), program modules (code and port declarations), and configuration

modules (which map ports to ports and include change script specifications). Definition modules and

program modules correspond to PROFIT objects and facets, respectively, while configuration module port

mappings correspond to PROFIT binding tables. Reconfiguration is based on commands to create

components, link ports, unlink ports, delete components and place components on machines,

with change scripts structured as condition/action rules. Users can also execute command sequences

externally. In order to refer to dynamically generated components from within a static program, they are

described by their structural characteristics through an object-selection language rather than by name.

This object selection language is navigational, describing which objects are linked through which ports to

which other objects, rather than associative as in PROFIT.

The Polylith distributed programming system [29] provides facilities for dynamic reconfiguration of

program modules. It provides reliable techniques for programmers to change module implementations,

system topology (i.e., the bindings between module interfaces), and system geometry (i.e., the mapping of

the structure onto a distributed architecture). A module is an operating-system process whose interface is

defined by an abstract data type. The implementation can thus be changed by replacing the entire process

with another that maintains the same interface.

The Polylith reconfiguration facilities allow for the suspension of communication between modules

during reconfiguration and the transfer of state information of the old implementation of a module to the

new one. It defines three groups of reconfiguration primitives: getting a capability for a change, making

a series of edits to describe the change, and applying the change atomically. PROFIT changes work

similarly: we first describe the set of changes, and then atomically make the necessary updates to the

15

executing program. Since PROFIT does not support replacement of executing processes, there is no need

to suspend communication between modules or to transfer state information. Polylith permits changes

only when the system is in a reconfigurable state; since PROFIT only extends the existing system, a change

can be made at any time — except there can be only one change in progress at a time. In other words,

entering a reconfigurable state can be expensive in Polylith but is cheap in PROFIT [30].

Craft [7] describes a resource management system for a processor bank. The system selects a resource

according to the attributes desired by the user, which are generally a subset of the catalogued attributes of

the resource. There is a central resource repository, where clients can register the services they are

willing to provide. Resources are matched up with users dynamically, as needed, and may even be

created on the fly when no existing resource matches a user query. The resource repository maintains a

set of prescriptions for constructing new resources, which involves forking of processes with particular

memory images onto specified machines. Dynamic allocation and (re)configuration of resources is at the

operating-system process level of granularity.

Frieder and Segal [9] describe a finer-grained approach, where individual procedures may be replaced in a

running program. Their approach depends on identifying procedures as active or inactive, where an

active procedure either has an activation record on the stack, can call a procedure that does have an

activation record on the stack, or is semantically dependent on a procedure on the stack. Procedures are

replaced as they become inactive. When a procedure containing local static data is updated, the updating

mechanism invokes a user-supplied ‘‘mapper procedure’’ that converts the data from its old

representation to the new one. Old code can call new code, through an ‘‘interprocedure’’ when the

interface has changed. All such changes are initiated externally, and there is no way to choose to make

changes from within the program. Even externally, it is only possible to substitute new procedures for old

procedures, by massaging the interfaces. It is not possible to make structural changes in the program.

Actors [1] represent the ultimate in a dynamically reconfigurable programming language. Each operation

potentially changes the actor that executed the operation into a brand new actor with a completely

different behavior. Actors are associated with mailboxes, and messages intended for actors are sent to

known mailboxes. Thus an actor A can send a message, and by the time a reply appears in the mailbox

corresponding to A, an entirely different actor B can be processing the messages from that mailbox.

Actors correspond roughly to PROFIT facets. Actors can be organized into communities, analogous to

PROFIT objects, where ‘‘receptionist’’ actors accept all incoming messages and delegate them to the

appropriate local actors.

16

4. Breeds and Stalls
In PROFIT, each operation is executed by invoking a procedure slot or accessing a data slot. When a slot

is declared indirect, the enclosing object must provide a binding to a slot in another facet or in the

interface of another object. This referenced slot must have the identical type signature as the original slot.

Breeds and stalls permit bindings to change over time while retaining compile-time interface checking.

Breeds provide the mechanism for declaring those facets that can substitute for each other. Stalls are the

language construct that permits certain slots to actually be rebound to a new occupant. An important

concept is that breeds and stalls refer to multiple slots in a single occupant. Hence stalls permit the

binding of multiple slots — all in the same facet — as a single unit; contrast this with Figure 2-2, where

1Q-option-price and 2Q-option-price are separately mapped to the corresponding slots in

Some-instrument.

A breed is defined as a set of slots representing a service provided by a facet. Each slot is defined by a

signature. Every facet that contains this set of slots is a member of the breed, and thus is presumed to

provide the defined service. Facets may contain more slots than those included in the breed. For

example, we can define any facet with data slots 1Q-option-price and 2Q-option-price to be a

member of the Option breed, as follows:

BREED Option
1Q-option-price: struct { strike-price: price,

option-price: price }
ON EMPTY { return { 0, 0 }; };

2Q-option-price: struct { strike-price: price,
option-price: price }

ON EMPTY { return { 0, 0 }; };
END BREED Option

The "ON EMPTY" syntax gives error handling code to be used when an uninitialized stall is accessed.

This issue is discussed further in Section 5.

Breeds provide a convenient abstraction for large distributed applications that evolve over time. Facets

and objects that conform to the breed specification may be interchanged without concern for

implementation details, and in fact each member of a breed has its own independent code. Classes, in

contrast, presume code sharing — the internal structure and operation code is defined once in the class

rather than separately in each of its instances. Types need not imply code sharing, but specify complete

interfaces. Breeds allow one to describe only the service required without restricting the object from

providing other services. Whereas breeds are static, protocols are dynamic: they prescribe sequences of

operations, which could unnecessarily limit the use of the provided services.

By relying on breeds, PROFIT circumvents the problem of interface mismatches between a client and its

new server. An interface mismatch could arise when the new occupant of a stall did not provide the same

facilities as the old one. Breeds allow manipulation of a set of slots as one unit and compile-time

determination of type conformance. By declaring the breed at compile-time, only one check has to be

17

carried out to ensure that a new binding preserves membership in the breed.

1Qs

2Qs

1Q-option-price

2Q-option-price

Strategy

...

25

100

S
om

e-
co

m
pa

ny
:

st
al

l

O
pt

io
n

Figure 4-1: Generic Stall

Some-instrument

stock-price

1Q-option-price

2Q-option-price

$114.75

($115,$.50)

($115,$4.75)

binding
table

1Qs

2Qs

1Q-option-price

2Q-option-price

Strategy

...

25

100

S
om

e-
co

m
pa

ny
:

st
al

l

O
pt

io
n

Figure 4-2: Binding an Occupant to a Stall

Breeds describe the facilities offered by server facets. A stall identifies the particular set of slots within a

client facet that can be rebound to corresponding slots in any member of an associated breed. A stall

consists of a stall name and a breed name, and the stall as a whole is depicted as indirect. Figure 4-1

illustrates an Option stall (Some-company) within a generic facet (Strategy). The declaration for

the Strategy facet would look like:

FACET Strategy
1Qs: price;
2Qs: price;
STALL Some-company: Option;
...

END FACET Strategy

The Some-company stall is essentially an Option-valued variable.

Figure 4-2 shows how the slots of an occupant (the Some-instrument facet), those matching the

Option breed definition, are bound to the Some-company stall in the Strategy facet. In addition to

18

the original (facet,slot) to (facet,slot) bindings, the binding table is now extended to bind (facet,stall) pairs

to occupant facets. Note that a second component (e.g., slot name) is not needed for the range of the

(facet,stall) binding, since the breed determines the names of the relevant slots in the occupant. We will

discuss how to request rebinding in the next section. The initial binding of an occupant to a stall is done in

the map clause of the object declaration:
OBJECT ...
FACETS: ... Strategy, Some-instrument ...

ENTRY: ...

MAP: ...
Strategy.Some-company->Some-instrument;
...

END OBJECT ...

Breeds solve the static interface problem, but there is another problem associated with the dynamics of

replacing one occupant with another. Recall that during an inter-facet call, the caller is not suspended but

rather accepts the next call in its own queue. This makes it possible for a facet to make a call to an

occupant of a stall, and then before that call returns, execute another operation to change the contents of

the stall to some other occupant. It is important to define what happens to the ‘‘dangling’’ call. When a

dangling call completes its execution and returns its result, the calling facet continues normally from the

statement following the call. However, subsequent calls to the same stall will be sent to the new occupant

rather than the old one. This approach is consistent with our notion of ‘‘reentrant’’ facets: arbitrary

changes can be made to a facet’s state between an indirect call and its return. Stalls simply extend this

principle: there is no way to distinguish between changes to the contents of an occupant of a stall and the

replacement of one occupant by another.

5. Pens
Using just breeds and stalls, the PROFIT programmer could define portfolios consisting of multiple

instruments, and change which particular instruments are included as market conditions change. The

programmer would have to declare specific named stalls/slots in his portfolio to be bound to each desired

instrument, and although an instrument could be substituted, the stalls/slots in the portfolio code could not

be renamed. This would be analogous to having variables declared X1, X2, X3 in a conventional

computational programming language (or, alternatively, a fixed size array indexed X[1], X[2], X[3]), with

no ability to create more variables (or change the size of the array) on the fly. Conic uses this scheme in

its ‘‘patient monitoring’’ example system [18].

The limitations of this approach become clear when the programmer wants to permit the user to change

the size as well as the composition of a portfolio during program execution. Of course the programmer

could declare a large number of stalls, and start out with most of them empty, but this would require

complicated storage management by the application programmer. Instead, we provide a scheme for

19

dynamically determining the number of facets that can support a designated service for the same client

facet.

Returning to our ranching analogy, a stall can hold a single animal while a pen can hold many animals,

collectively called a herd. Thus a herd is a collection of facets belonging to the same breed; each member

is called a constituent. The pen is the language construct that allows herds to be collected (rounded up).

The purpose of this extension is to allow a portfolio to contain multiple instruments, where the number of

constituents as well as the identity of the constituents can change over time. If only the identity could

change but the number was fixed, then a fixed array of N stalls would suffice, as mentioned above. This

notion of a herd requires us to be able to select individual constituents and to provide operations over

entire herd. The syntax for declaring a pen is similar to that of a stall:

FACET Big-Strategy
1Qs: price;
2Qs: price;
PEN Many-company: Option;
...

END FACET Big-Strategy

The Many-company pen is essentially a set variable containing Options.

mattel
stock-price

1Q-option-price

2Q-option-price

$114.75

($115,$.50)

($115,$4.75)

binding
table

parker
stock-price

1Q-option-price

2Q-option-price

$39.38

($40,$.06)

($40,$1.31) fischer
stock-price

1Q-option-price

2Q-option-price

$14.38

($15,$.38)

($15,$.88)

nintendo
stock-price

1Q-option-price

2Q-option-price

$66.75

($65,$1.75)

($65,$3.38)

coleco
stock-price

1Q-option-price

2Q-option-price

$100

($90,$10)

($90,$12)

1Qs

2Qs

Big-Strategy

...

25

100

M
an

y-
co

m
pa

ny
:

pe
n

O
pt

io
n 1

2

3

4
5

Figure 5-1: Binding a Herd to a Pen

Figure 5-1 shows a toy example of mapping a herd of instruments mattel, coleco, parker,

fischer and nintendo into the Many-company pen of the Big-strategy facet. Notice that the

aggregate structure is effectively represented as part of the binding table, where the pen is linked to an

entry in the binding table and this entry links to all of the facets in the herd.

PROFIT provides two kinds of operations on pens: iteration and associative queries. Iterating over a is

accomplished using a SETL-like ‘‘forall’’ statement. The key feature of this statement is that each

20

mattel
stock-price

1Q-option-price

2Q-option-price

$114.75

($115,$.50)

($115,$4.75)

binding
table

parker
stock-price

1Q-option-price

2Q-option-price

$39.38

($40,$.06)

($40,$1.31) fischer
stock-price

1Q-option-price

2Q-option-price

$14.38

($15,$.38)

($15,$.88)

nintendo
stock-price

1Q-option-price

2Q-option-price

$66.75

($65,$1.75)

($65,$3.38)

coleco
stock-price

1Q-option-price

2Q-option-price

$100

($90,$10)

($90,$12)

1Qs

2Qs

Big-Strategy

...

25

100
M

an
y-

co
m

pa
ny

:

pe
n

O
pt

io
n

1

2

3

4
5

1Q-option-price

2Q-option-priceM
os

t-
ex

pe
ns

iv
e:

st
al

l

O
pt

io
n

Figure 5-2: Iterating through the Members of a Herd

element of the set is accessed once and only once. This approach is difficult to implement for PROFIT,

because the constituency of a pen can change while the iteration is in progress, and thus some mechanism

would be needed to keep track of which constituents had already been visited.

We solve this problem by implementing pens as ordered sets, with the order determined by the relative

time of addition to the set (see Figure 5-2). If constituents are added to a pen while an iteration is in

progress, it is ensured that they will be accessed appropriately. Thus it is guaranteed that at the end of the

iteration, all the current constituents of the herd will have been visited. Furthermore, if no constituent has
2been removed and added again during the iteration, they will each have been visited exactly once. The

once-and-only-once property is important since few operations are idempotent (i.e., imagine

buying/selling shares), thus an ordered multiset or sequence would be an inappropriate data structure.

In order for a constituent of a pen to be manipulated, it must first be selected. The resulting constituent is

housed in a stall for reference during the actual manipulation. For example, in Figure 5-2, the

2An alternative approach would be to brand each constituent of the pen as it is visited, but this would require the overhead of
de-branding after each complete iteration and when any constituent is removed from the pen.

21

Most-expensive stall is occupied by the stock in the Many-company pen with the highest first

quarter strike price. To accomplish this, the portfolio manager executes

Query(Many-company, Most-expensive)
Where MAX(1Q-option-price.strike-price)

If this query is successful, as illustrated in the figure, then the relevant slots of the new occupant

(mattel) can be accessed as "Most-expensive.<slotname>". The case of an unsuccessful query is

discussed later.

The Query syntax employed above may be used to replace either the occupant of a stall or the

constituency of a pen. To add constituents to a pen without removing those already there, the Add syntax

below is used. The Remove statement is used to remove one or more constituents from a pen or the

occupant from a stall. There are seven forms:

Query(source-pen, target-pen) Where ...

Query(source-pen, target-stall) Where ...

Add(source-pen, target-pen) Where ...

Add(source-stall, target-pen)

Add(source-stall, target-stall)

Remove(target-pen) Where...

Remove(target-stall)

When the target is a stall, a query by definition returns at most element (a non-deterministic choice if

there are multiple possibilities). Additional relational operators could be defined, as long as they refer

only to the slots specified in the breed. But efficient implementations might be difficult due to the

distributed nature of herds. For example, since an object’s binding table is replicated in every process

that contains any facet of the object, the manipulation of the stalls and pens represented through the

binding table should be executed using a consistency-preserving technique such as two-phase commit.

Further discussion of this topic is beyond the scope of this paper.

Now let’s consider the case where a query might fail. For example, the Many-company pen above

might have been empty, and thus there would be no maximum first-quarter strike price. Hence the

Most-expensive stall would be empty after the query. In general, a query may be unable to find

desirable members of a breed to place in a pen or to occupy a stall. The possibility of an empty stall is

particularly problematic, because it is necessary to define what happens when a slot of an empty stall is

accessed.

One approach would be to include an elaborate exception handling mechanism in PROFIT. However, in

keeping with the coordination language/computation language distinction, any exception handling facility

should come from the base computation language rather than from PROFIT. In case the base computation

22

language has no specific facility, however, the PROFIT design includes the following simple mechanism:

every stall has an associated ‘‘empty’’ bit, treated as a built-in data slot. This bit can be tested prior to

accessing the stall, for example,

if (Most-expensive.empty == 0) ...
else ...

It is generally impossible to prevent access to a slot in an empty stall for three reasons: (1) a query may

fail, as described above; (2) during a call to indirect slot, the facet is relinquished to another thread of

control, which might make the stall empty; and (3) a stall may indirect to another stall, which in turn

might indirect to a facet, and the intermediate stall might be changed at any time. The first two situations

can be handled by checking the empty bit and careful programming of calls. But the third problem

requires exception handling. Thus PROFIT defines a very primitive form of exception handling ("ON

EMPTY") in the breed definitions. If an empty stall is accessed, the computation language code

associated with the "ON EMPTY" condition in the breed (Option) is executed (see section 4). The

possibilities for what can be done in this condition are determined by the facilities provided by the base

computation language.

One anomaly with associative queries is that the contents of facets and objects in a pen may change

during a query. For example, while querying a prices databases for the instrument with the highest yield,

the yields of any and all of the instruments may be changing; in particular, instruments that have already

been checked and dismissed may increase their yields. This issue arises because the classical transaction

model [8] is not applicable to rapidly changing data, because the updates to this data are generated outside

the control of the system. We briefly address this difficulty in a previous paper [16].

6. Registries
We have discussed the idea that the occupant of a stall or the constituents of a herd can change. The

questions arise as to how does a program ‘‘know’’ what facets are available. For example, we would like

for a portfolio manager to be able to iterate through the available instruments and decide in which to

invest, whether or not the portfolio’s owner has made previous investment in any of these instruments. It

should even be possible to consider new instruments that did not exist at the time the portfolio was

originally constructed.

A common solution to this problem is to provide a ‘‘yellow pages’’ directory that keeps track of all the

services provided by entities in the program and the means for accessing the corresponding entities. In

PROFIT, this role is fulfilled by registries, each a system-defined pen that contains all the members of a

particular breed. Registries can be queried in the same manner as pens, and they return one or more

registered members. Because registries are automatically maintained by PROFIT, applications cannot

execute the Add or Remove operations. A similar approach is described by Craft [7], where

computational resources can be associatively accessed in a processor bank.

23

portfolio-mgr

binding
table

Option
registry

Query(system.Option,Some-company)

1Qs

2Qs

1Q-option-price
2Q-option-price

Strategy

25

100

S
om

e-
co

m
pa

ny
:

st
al

l

O
pt

io
n

mattel
stock-price

1Q-option-price

2Q-option-price

$114.75

($115,$.50)

($115,$4.75)

parker
stock-price

1Q-option-price

2Q-option-price

$39.38

($40,$.06)

($40,$1.31) fischer
stock-price

1Q-option-price

2Q-option-price

$14.38

($15,$.38)

($15,$.88)

nintendo
stock-price

1Q-option-price

2Q-option-price

$66.75

($65,$1.75)

($65,$3.38)

coleco
stock-price

1Q-option-price

2Q-option-price

$100

($90,$10)

($90,$12)

Figure 6-1: Facet Prior to Query

The PROFIT system provides a registry for each breed. When a new facet is created (we explain how in

the next section), it is automatically added to all the appropriate registries — there may be more than one

appropriate registry since a facet can be a member of multiple breeds. This is similar to classes in

object-oriented databases, where the class is not simply a type definition but also a repository for all its

instances. Subsequent queries on these registries can place the new facet in a stall or add it to a pen.

Figure 6-1 shows a facet prior to a query, while Figure 6-2 shows the rebinding of the facet after the

query.

7. Run-Time Issues
The discussion so far covers sufficient facilities to reconfigure objects and facets within an executing

program. For example, a portfolio manager can concentrate on a different stock by changing a stall, and a

portfolio can hold a changing variety of stocks using a pen. Previously unconsidered stocks, resident in

the prices database, can be evaluated using a registry. However, we have not yet described how one can

construct entirely new portfolios or to add new instruments to the prices databases.

There are two alternative paradigms for adding facets and objects to a running program: internally and

externally. In the internal case, the program itself creates the new entities, for example, by executing the

24

portfolio-mgr

binding
table

Option
registry

1Qs

2Qs

1Q-option-price
2Q-option-price

Strategy

25

100

S
om

e-
co

m
pa

ny
:

st
al

l

O
pt

io
n

mattel
stock-price

1Q-option-price

2Q-option-price

$114.75

($115,$.50)

($115,$4.75)

parker
stock-price

1Q-option-price

2Q-option-price

$39.38

($40,$.06)

($40,$1.31) fischer
stock-price

1Q-option-price

2Q-option-price

$14.38

($15,$.38)

($15,$.88)

nintendo
stock-price

1Q-option-price

2Q-option-price

$66.75

($65,$1.75)

($65,$3.38)

coleco
stock-price

1Q-option-price

2Q-option-price

$100

($90,$10)

($90,$12)

OK

Figure 6-2: Facet After Rebinding

new operation on the type of the entity. This approach is common in object-oriented computation

languages like Smalltalk and C++, where the creation/destruction of objects is the primary mechanism for

computing. This requires that the new entity be an instance of a known type, with no new code of its own.

PROFIT facets and objects, in contrast, stand on their own. Without interpretive or dynamic linking

facilities, it is not possible to add new code internally to an executing process.

Rather than rely on dynamic linking from the operating system, the PROFIT programmer creates the new

entities externally to the program and then combines them with the running program. Thus we need a

mechanism to add new processes, objects and facets to a given running program. Because most operating

systems already provide means for creating new processes at any time, we have chosen to use operating-

system processes as our vehicle for adding new objects and facets as well. This approach still requires

PROFIT to have the ability to incrementally update existing processes to register new facets and objects,

and to connect a new process with already executing processes.

The PROFIT run-time structure consists of a collection of PROFIT processes and a distinguished operating-

system process that serves as the coordinator for the program, called the ranchhouse. Each process

contains a collection of facets, a collection of binding tables and external interfaces representing objects,

and a coordination component that allows each process to communicate with the ranchhouse.

25

The ranchhouse acts as a repository for all of the static definitions, configuration information and

registries in a PROFIT program. The static definitions include the definitions of objects (i.e., their names

and external interfaces), and the definitions of breeds (i.e., their names, slot names and types). The

configuration information indicates the run-time organization of the program, including which facets

reside in which processes and the binding tables of objects, as well as the host names and operating-

system process identifiers of the PROFIT processes. The registries map breed names to the list of facets

and objects belonging to the breed, and also link breed slots to corresponding slots in each of these

members of the breed (e.g., the Stock-price slot of breed Option could be the fifth slot of facet

mattel and the fifteenth slot of facet coleco).

To make an addition to an executing program, the programmer can define new facets and new objects,

including bindings within the new objects to old facets and old objects. But the programmer cannot

define new breeds, modify existing breeds, modify existing facets, change the external interfaces or

binding tables of existing objects, or change the composition of existing processes. The collection of new

facets and objects are declared in a new process called a room. A room is in effect added on to the

existing collection of processes in the same sense that a real ranchhouse is extended by adding new rooms

onto its end and creating a doorway in what was once the outside wall.

Adding a new room to an executing PROFIT program is accomplished in three phases: compile, link and

execute. The compilation phase transforms the textual descriptions of the new components into object

code, including the information needed to update the executing program. Compilation takes advantage of

symbol table information representing the static definitions known by the ranchhouse. The link phase

begins when the object code for the new room is presented to the ranchhouse as an extension. The

ranchhouse inspects the room and propagates corresponding changes to the processes that it coordinates.

The execution phase then activates the new process and adds its facets and objects to the relevant system

registries. All room additions must be serial, i.e., the linking and execution phases must be executed as an

atomic unit, with respect to other additions; this is enforced by the ranchhouse.

Compilation can proceed separately from linking and execution. Compilation begins by taking a snapshot

of the current static definitions from the ranchhouse. The new code is translated and the incremental

changes to the ranchhouse information are computed. The incremental changes must be relocatable, in

case there have been unrelated links between the time that the snapshot was taken and the time that the

resulting room is actually linked. The sequence of compile, link and execute is structured in such a way

that out-of-date snapshots cannot be made invalid by subsequent links, although exact offsets need to be

computed at link time.

The purpose of the link phase is to connect any new facets to existing objects and vice versa. The

ranchhouse performs any necessary relocation in the incremental binding information. The ranchhouse

then broadcasts these binding table deltas to all the existing processes, and waits for acknowledgments.

26

Because the registries have not yet been updated, and existing entries in binding tables have not been

changed, there is no way for any currently executing code to refer to a new object or facet. This is

appropriate, since the new room is not yet running.

Finally, in the execution phase the ranchhouse forks the new process. In its startup code, the new process

first sends its facet and object information to the ranchhouse, to update the registries. This action makes

the new facets and objects available to the rest of the program, for installation in stalls and pens. The

room now executes its initialization thread.

The syntax for a room combines the syntax of facets and objects with that of a process. The following

PROFIT code corresponds to figure 7-1. Note that the object definitions can refer to any combination of

the new facets and existing facets in the snapshot obtained from the ranchhouse (the modified program

named in the room definition). The process must contain exactly those facets declared in the room.

ROOM With-A-View
MODIFIES PROGRAM BunkHouse;

<facet definitions>

OBJECT Fenster
FACETS: Pane, Glass, Latch, Sash;
...
END OBJECT Fenster

OBJECT Fenetre
FACETS: Glass, Frame, Blind, Shade;
...
END OBJECT Fenetre

PROCESS Skylight
FACETS: Pane, Sill, Latch, Sash, Glass, Frame;

start := Latch.Unlock();
<error handling>

END PROCESS Skylight
END ROOM With-A-View

The purpose of the ranchhouse mechanism is to provide language-level syntax for describing the run-time

connection of new facets and objects with an existing program. Other languages, such as Self [5], have

also taken the approach of providing their own language-specific dynamic linking. If the underlying

operating system provides dynamic linking, however, that may provide a more efficient implementation.

8. Network Management Examples
Imagine a small network with three workstations, two printers and a file server, as illustrated in figure

8-1. Two breeds, Printer and Device, are shown in figure 8-2. We graphically depict two

applications, a print manager that allows selection among the available printers (figure 8-3), and a

network monitor that shows the status of the various devices on the network (figure 8-4). We represent

each node in the network with a facet, and show a subset of this facet’s slots next to the node in the

27

Pane Sash

Sill Glass

FrameLatch

Sash

Glass

Latch

Pane

BT

Object Fenster

Blind

Glass

Frame

Shade

BT

Object Fenetre

Process

Room With-A-View Blind

Snapshot Info
from
Ranch House

Skylight

Pane Sash

Sill Glass

FrameLatch

Shade

Sash

Glass

Latch

Pane

BT

Object Fenster

Blind

Glass

Frame

Shade

BT

Object Fenetre

Figure 7-1: Compiling a New Room

AAAAAAAAAAAAAAAA

AAA
AAAA

WS1

WS2

WS3 PRINT1

SERVER

PRINT2

Figure 8-1: Small Network

picture. Those slots that are used in the application are highlighted.

28

BREED Printer
name: char *;
location: char *;
spool: char *; /* directory */
printqueue: queue;
errorcode: int; /* 0 ok, 1 jammed, 2 tray empty, etc. */
enqueue: ... /* function to print */
dequeue: ... /* function to cancel */
query: ... /* function to display printqueue */

END BREED Printer

BREED Device
ip: char *;
name: char *;
status: int; /* 0 down, 1 up */
util: float; /* utilization */

END BREED Device

Figure 8-2: Network Breeds

ip
name
status
util

name
location
spool
printqueue
errorcode
enqueue
dequeue
query
ip
status
util

WS1 WS2 WS3PRINT1 PRINT2 SERVER

name
location
spool
printqueue
errorcode
enqueue
dequeue
query

ip
status
util

ip
name
status
util

ip
name
status
util

ip
name
status
util

Print

PrintManager Object

PRINT1

Printer Stall File Stall

foo.bar

lprm

lpq

lpr

E
xt

er
n

al
 In

te
rf

ac
e

Figure 8-3: Print Manager

The PrintManager object in figure 8-3 contains facets with two stalls representing the file to be

printed and the printer. The object’s interface includes entries to print, display and cancel. To request

that a file "foo.bar" be printed, the caller invokes the lpr command with the name of the file and,

optionally, the name of the printer. The PrintManager fills the file stall with the directory entry for

"foo.bar". If the lpr command specified a printer, then the printer stall is filled with the corresponding

node; otherwise, the default printer is used. The PrintManager then calls that printer’s enqueue

procedure slot to send the file to the associated print spooler. From the point of view of the PROFIT

programmer, the facets representing the file and the printer are local to the PrintManager object and

29

can be manipulated directly, even though these facets may be located on different machines as shown in

the figure.

ip
name
status
util

location
spool
printqueue
errorcode
enqueue
dequeue
query

ip
status
util

WS1 WS2 WS3
PRINT1 PRINT2 SERVER

location
spool
printqueue
errorcode
enqueue
dequeue
query

ip
status
util

ip
name
status
util

ip
name
status
util

ip
name
status
util

NetworkMonitor Object

name name

O1 O2 O3 O4 O5 O6

Device Pen

Display
Daemon

Current
Stall

O5

Figure 8-4: Network Monitor

Figure 8-4 shows a NetworkMonitor object containing facets with a Display daemon, a pen

collecting all the devices being monitored, and a stall representing the one device whose displayed

information is currently being updated. The display daemon repeatedly iterates through the Devices

pen, filling the Current stall, to refresh its display. A more complex network management system

could associate a different daemon with each device. This might be represented as a fixed number of

daemons in an array, corresponding to monitor windows, or by a dynamically sized pen of composite

objects each representing a daemon together with its device information. Again, all the entities in this

complex distributed application can be manipulated by the PROFIT programmer as local variables and

procedures.

9. Implementation
The current PROFIT implementation is limited. It supports only a single process, although there may be

multiple objects and shared facets. PROFIT includes several language facilities related to timing and

scheduling, for example, the everytime statement repeats a loop within a specified time period after

the beginning of the previous execution of the loop and the pause statement indicates an opportunity for

a higher priority call to pre-empt the facet.

The implementation is in the form of a coordination language for the C computation language. The

30

coordination code is translated into C, and the compiler and run-time support is written in C. Threads are

supported using the SunOS 4.1.1 lightweight processes package (lwp). The parser consists of 4375 lines

of C, 247 lines of lex rules and 645 lines of yacc rules. The run-time support consists of an additional

1366 lines of C.

One reasonably large application program, called SPLENDORS [26], has been completed. SPLENDORS

provides a specific real-time portfolio management application intended for use by non-programmer

financial industry professionals; a library of generic facets for reuse in user portfolios; parameterization

and inclusion of library components in programs; and an X windows user interface. SPLENDORS

includes 551 lines of PROFIT coordination code and 6148 lines of C computation code (1541 lines of

which are for the user interface).

SPLENDORS uses a different facility for dynamic reconfiguration than described here. Since the current

implementation supports only a single process, it was not possible to use our ranchhouses scheme of

adding on new rooms. Instead, a partially interpretive approach was followed [27]. The PROFIT

programmer provides a library of generic price and daemon facets, with two versions of each —

interpreted and compiled. When the end-user adds new stocks to her portfolio, she uses a simple menu-

based interface to provide parameters to the interpretive price and daemon facets, and to tailor generic

source code stored in a file. The next time the program is generated using the make tool, corresponding

facets with these parameters compiled in are automatically included. Thus the performance penalty is

only temporary, since the program can be regenerated after every trading day. Further, the non-

programmer end-user can carry out her own ‘‘programming’’, without the aid of programming staff,

provided sufficient generic facets are available in the library. This mechanism represents the bulk of the

SPLENDORS application system.

10. Summary
We have developed a new approach to dynamic reconfiguration in on-line distributed applications based

on a data sharing model. Our model consists of facets, objects and processes, with facets as the unit of

sharing. Facets reside in a single process but may be shared among multiple objects, and different facets

of the same object may reside in different processes. Facets can be written independently of the

composition of objects as information hiding units and interface to each other through the binding table(s)

of the containing object(s).

The previously published subset of our language design featured static allocation of facets. The primary

contribution of this paper is the presentation of important special cases of dynamic reconfiguration,

without resorting to interpretation or dynamic linking. We propose a new metaphor consistent with

PROFIT’s data sharing model for expressing dynamic reconfiguration facilities within the programming

language. Breeds describe the facilities required by an entity, stalls are collections of slots that are bound

to a member of the designated breed, and pens are essentially stalls containing multiple members of a

31

breed. Registries are system-defined pens, one for each breed, that automatically contain every member

of the breed. Existing programs can be extended by injecting a new process containing new facets and

new objects.

Acknowledgments
Tushar Patel is primarily responsible for the PROFIT implementation, with contributions from Jason Kim,

Michael Mayer and Isai Shenker. The SPLENDORS application was developed as part of Tushar’s MS

thesis research. Discussions with Terry Boult, Jim Donahue, Gary Herman, Catherine Lassez, Aurel

Lazar, Harold Ossher, Dan Schutzer and Mark Segal have contributed substantially to the development of

the ideas presented in this paper. We would like to thank Harold Ossher, Jim Purtilo and Marvin Theimer

for their helpful comments on earlier versions of this paper.

References

[1] Gul Agha and Carl Hewitt.
Actors: A Conceptual Foundation for Concurrent Object-Oriented Programming.
In Bruce Shriver and Peter Wegner (editors), Research Directions in Object-Oriented

Programming, pages 49-74. The MIT Press, Cambridge MA, 1987.

[2] Andrew Black, Norman Hutchinson, Eril Jul, Henry Levy and Larry Carter.
Distribution and Abstract Types in Emerald.
IEEE Transactions on Software Engineering SE-13(1):65-76, January, 1987.

[3] Terrance Boult.
Using Profit for Machine Vision.
1990
Private Communication.

[4] Nicholas Carriero and David Gelernter.
Linda in Context.
Communications of the ACM 32(4):444-458, April, 1989.

[5] Craig Chambers, David Ungar and Elgin Lee.
An Efficient Implementation of SELF, a Dynamically-Typed Object-Oriented Language Based on

Prototypes.
In Norman Meyrowitz (editor), Object-Oriented Programming Systems, Languages and

Applications Conference Proceedings, pages 49-70. ACM Press, New Orleans LA, October,
1989.

Special issue of SIGPLAN Notices, 24(10), October 1989.

[6] Paola Ciancarini.
Coordination Languages for Open System Design.
In International Conference on Computer Languages, pages 252-260. IEEE Computer Society

Press, New Orleans LA, March, 1990.

[7] Daniel H. Craft.
Resource Management in a Decentralized System.
In 9th ACM Symposium on Operating Systems Principles, pages 11-19. Bretton Woods NH,

October, 1983.
Special issue of Operating Systems Review, 17(5), October 1983.

32

[8] K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Traiger.
The Notions of Consistency and Predicate Locks in a Database System.
Communications of the ACM 19(11):624-632, November, 1976.

[9] Ophir Frieder and Mark E. Segal.
On Dynamically Updating a Computer Program: From Concept to Prototype.
The Journal of Systems and Software 14(2):111-128, February, 1991.
Elsevier Science.

[10] Paul E. Haeberli.
ConMan: A Visual Programming Language for Interactive Graphics.
In SIGGRAPH ’88, pages 103-111. ACM, Atlanta GA, August, 1988.
Special issue of Computer Graphics, 22(4), August 1988.

[11] Brent Hailpern and Harold Ossher.
Extending objects to provide multiple interfaces and access control.
IEEE Transactions on Software Engineering 16(11):1247-1257, November, 1990.

[12] William Harrison.
3RPDE : A framework for integrating tool fragments.

IEEE Software 4(6):46-56, November, 1987.

[13] Richard Helm, Ian M. Holland and Dipayan Gangopadhyay.
Contracts: Specifying Behavioral Compositions in Object-Oriented Systems.
In Norman Meyrowitz (editor), OOPSLA/ECOOP ’90 Conference on Object-Oriented

Programming Systems, Languages and Applications/European Conference on Object-
Oriented Programming, pages 169-180. ACM Press, Ottawa, Canada, October, 1990.

Special issue of SIGPLAN Notices, 25(10), October 1990.

[14] Michael B. Jones, Richard F. Rashid and Mary R. Thompson.
Matchmaker: An Interface Specification Language for Distributed Processing.
In 12th Annual ACM Symposium on Principles of Programming Languages, pages 225-235. New

Orleans LA, January, 1985.

[15] Gail E. Kaiser and Brent Hailpern.
An Object Model for Shared Data.
In International Conference on Computer Languages, pages 135-144. IEEE Computer Society

Press, New Orleans LA, March, 1990.

[16] Gail E. Kaiser and Brent Hailpern.
An Object-Based Programming Model for Shared Data.
ACM Transactions on Programming Languages and Systems 14(2):201-264, April, 1992.

[17] Jeff Magee, Jeff Kramer, and Morris Sloman.
Constructing Distributed Systems in Conic.
IEEE Transactions on Software Engineering 15(6):663-675, June, 1989.

[18] Jeff Kramer, Jeff Magee and Keng Ng.
Graphical Configuration Programming.
Computer 22(10):53-65, October, 1989.
IEEE Computer Society.

[19] Glenn E. Krasner and Stephen T. Pope.
A Cookbook for Using the Model-View Controller User Interface Paradigm in Smalltalk-80.
Journal of Object-Oriented Programming 1(3):26-49, August/September, 1988.
SIGS Publications.

33

[20] Iyengar Krishnan and Wolfgang Zimmer (editors).
IFIP TC6/WG6.6 2nd International Symposium on Integrated Network Management.
North-Holland, Washington DC, 1991.

[21] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen and Kristen Nygaard.
The BETA Programming Language.
In Bruce Shriver and Peter Wegner (editors), Research Directions in Object-Oriented

Programming, pages 7-49. The MIT Press, Cambridge MA, 1987.

[22] Henry Lieberman.
Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems.
In Norman Meyrowitz (editor), Object-Oriented Programming Systems, Languages and

Applications Conference Proceedings, pages 214-223. ACM, Portland OR, September, 1986.
Special issue of SIGPLAN Notices, 21(11), November 1986.

[23] Barbara Liskov, Toby Bloom, David Gifford, Robert Scheifler and William Weihl.
Communication in the Mercury System.
In Bruce D. Shriver (editor), 21st Annual Hawaii International Conference on System Sciences,

pages 178-187. IEEE Computer Society, Kona HI, January, 1988.

[24] Subrata Mazumdar and Aurel A. Lazar.
Knowledge-Based Monitoring of Integrated Networks.
In Branislav Meandzija and Jil Westcott (editors), IFIP TC 6/WG 6.6 Symposium on Integrated

Network Management, pages 235-243. North-Holland, Boston MA, May, 1989.

[25] Branislav Meandzija and Jil Westcott (editors).
IFIP TC6/WG6.6 Symposium on Integrated Network Management.
North-Holland, Boston MA, 1989.

[26] Tushar M. Patel and Gail E. Kaiser.
The SPLENDORS Real Time Portfolio Management System.
In 1st International Conference on Artificial Intelligence Applications on Wall Street, pages

73-78. IEEE Computer Society Press, New York NY, October, 1991.

[27] Tushar M. Patel.
Real-time Portfolio Management and Automatic Extensions.
Master’s thesis, Columbia University, Department of Computer Science, October, 1991.
CUCS-030-91.

[28] Peter Peinl, Andrea Reuter and Harald Sammer.
High Contention in a Stock Trading Database: A Case Study.
In 1988 SIGMOD International Conference on the Management of Data, pages 260-268. ACM,

Chicago IL, June, 1988.
Special issue of SIGMOD Record, 17(3), September 1988.

[29] James M. Purtilo and Christine R. Hofmeister.
Dynamic Reconfiguration of Distributed Programs.
In 11th International Conference on Distributed Computing Systems, pages 560-571. IEEE

Computer Society, Arlington TX, May, 1991.

[30] James M. Purtilo.
Comparison of Polylith and Profit.
January, 1992
Private communication.

34

[31] Marc Shapiro, Philippe Gautron and Laurence Mosseri.
Persistence and Migration for C++ Objects.
In Stephen Cook (editor), 3rd European Conference on Object-Oriented Programming, pages

191-204. Cambridge University Press, Nottingham, UK, July, 1989.

[32] Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andy Lowry, Daniel M. Yellin and Shaula
Alexander Yemini.
Hermes A Language for Distributed Computing.
Prentice-Hall, Englewood Cliffs NJ, 1991.

[33] SunOS Reference Manual Section 3L: Lightweight Processes Library
Sun Microsystems, Inc., Mountain View CA, 1987.

[34] David Ungar and Randall B. Smith.
Self: The Power of Simplicity.
In Norman Meyrowitz (editor), Object-Oriented Programming Systems, Languages and

Applications Conference Proceedings, pages 227-242. ACM Press, Orlando FL, October,
1987.

Special issue of SIGPLAN Notices, 22(12), December 1987.

[35] Jiawang Wei and Markus Endler.
A Configuration Model for Dynamically Configurable Distributed Systems.
In Bruce D. Shriver (editor), 24th Hawaii International Conference on System Sciences, pages

265-274. IEEE Computer Society, Kauai HI, January, 1991.

